摘要
针对传统质量管理理念约束下,离散制造企业质量管理体系条块分割,管理活动分散且对大规模质量数据分析匮乏的问题,文章从产品生命周期的角度对质量数据进行了分析整理,在进行数据挖掘之前对数据的获取、数据的预处理以及数据的转化进行了讨论,构建了ETL数据预处理模型。然后对具体的数据挖掘应用方法进行了研究,提出了产品生命周期质量数据挖掘整体体系结构,并对结构中包含的数据层、方法层、知识层、应用层进行了分析阐述。
To solve the problem of the quality management system of the discrete manufacturing enterprise is segmented,decentralized and lacking of large-scale quality data analysis under the traditional concept, this paper analyzes the quality data from the perspective of the whole life cycle,it have discussed the data acquisition, data preprocessing and data conversion before data mining,and have constructed the ETL data preprocessing model. Then, studied the concrete data mining application method, put forward the overall data mining architecture of product life cycle quality data,and analyzed the data layer, method layer, knowledge layer and application layer contained in the architecture.
作者
高建荣
高琦
高菲
Gao Jianrong;Gao Qi;Gao Fei(Shandong University,Key Laboratory of High Efficiency and Clean Mechanical Manufacture Shandong University, Ministry of Education, Jinan 250061, China;Shandong University, School of Mechanical Engineering , Jinan 250061,China)
出处
《智能制造》
2018年第1期55-59,共5页
Intelligent Manufacturing
基金
"十三五"装备预研领域基金项目(61409230102)