期刊文献+

基于产品生命周期的质量数据分析与数据挖掘 被引量:1

Quality data analysis and data mining based on product life cycle
下载PDF
导出
摘要 针对传统质量管理理念约束下,离散制造企业质量管理体系条块分割,管理活动分散且对大规模质量数据分析匮乏的问题,文章从产品生命周期的角度对质量数据进行了分析整理,在进行数据挖掘之前对数据的获取、数据的预处理以及数据的转化进行了讨论,构建了ETL数据预处理模型。然后对具体的数据挖掘应用方法进行了研究,提出了产品生命周期质量数据挖掘整体体系结构,并对结构中包含的数据层、方法层、知识层、应用层进行了分析阐述。 To solve the problem of the quality management system of the discrete manufacturing enterprise is segmented,decentralized and lacking of large-scale quality data analysis under the traditional concept, this paper analyzes the quality data from the perspective of the whole life cycle,it have discussed the data acquisition, data preprocessing and data conversion before data mining,and have constructed the ETL data preprocessing model. Then, studied the concrete data mining application method, put forward the overall data mining architecture of product life cycle quality data,and analyzed the data layer, method layer, knowledge layer and application layer contained in the architecture.
作者 高建荣 高琦 高菲 Gao Jianrong;Gao Qi;Gao Fei(Shandong University,Key Laboratory of High Efficiency and Clean Mechanical Manufacture Shandong University, Ministry of Education, Jinan 250061, China;Shandong University, School of Mechanical Engineering , Jinan 250061,China)
出处 《智能制造》 2018年第1期55-59,共5页 Intelligent Manufacturing
基金 "十三五"装备预研领域基金项目(61409230102)
关键词 质量管理理念 产品生命周期 数据挖掘 数据分析 企业质量管理体系 数据预处理 体系结构 条块分割 product life-cycle management quality data data preparation data mining architecture
  • 相关文献

参考文献4

二级参考文献28

  • 1王学华,沈西挺.PDM在生产过程中的质量管理[J].机械设计与制造,2005(8):175-176. 被引量:2
  • 2吴德会.铣削加工粗糙度的智能预测方法[J].计算机集成制造系统,2007,13(6):1137-1141. 被引量:10
  • 3史忠植.知识发现.北京:清华大学出版社,2002
  • 4俞瑞钊,陈奇.智能决策支持系统实现技术.杭州:浙江大学出版社,2000
  • 5Fayyad U, Piatetsky-Shapiro G, Smyth P.Knowledge discovery and data mining: towards a unifying framework.In:Proceeding of The Second Int. Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon: AAAI Press, 1996:82~88
  • 6LOU S. Development of four in process surface recognition systems to predict surface roughness in end millingED. A- mes,IA,USA: Iowa State University, 1997.
  • 7TSAI Y S, CHEN J C, LOU S J. An in-process surface recog- nition system based on neural networks in end milling cutting operations EJ. International Journal of Machine Tools - Manufacture, 1999,39(4) .. 583 605.
  • 8CHEN J C, HUANG I3. An in-process neural network-based surface roughness prediction(INN SRP)system using a dyna- mometer in end milling operations[J]. Interuatioal Journal of Advanced Manufacturing Technology, 2003,21 (5) : 339-347.
  • 9BREZOCNIK M, KOVACIC M, FICKO M. Prediction of sur face roughness with genetic programming]-J. Journal of Mate rials Processing Technology, 2004,157/158(S) : 28 36.
  • 10LOS P. An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling[J]. Journal of Materials Processing Technology, 2003, 142 (3) :665-675.

共引文献48

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部