期刊文献+

深层次特征学习的Adaboost大规模图像分类算法 被引量:1

Adaboost image classification based on deep feature learning
下载PDF
导出
摘要 针对浅层次大规模图像分类的低精度问题,提出深层次特征学习的Adaboost图像分类算法。首先以DBN作为弱分类器对样本图像进行学习,根据每次训练得到的分类错误率以及各样本的分类准确性调整权值;然后在所有弱分类器训练好以后,使用BP算子回溯再次整体调整体样本权值;最后将所有弱分类器集成强分类器,输出最终分类结果。使用MNIST和ETH-80两种数据集进行实验仿真,并将分类结果与其他算法进行比较。结果表明所提算法的分类精度明显高于其他算法,有效实现了高精度的大规模图像分类。 Aiming at the low precision problem of shallow large scale image classification,this paper proposes an adaboost algorithm in large-scale image classification based on deep feature learning.Firstly,DBN is used as the weak classifier to learn the sample images,and the weights are adjusted according to the classification error rate and the classification accuracy of each sample.After all the weak classifiers are trained,the BP operator is used to readjust the sample weight and output the final error rate of each classifier.Finally,all weak classifiers are integrated into strong classifier and output the final results.This paper simulates the experiment with two kinds of data sets,which are MNIST and ETH-80.Comparing the classification results to other algorithms,the classification accuracy of this algorithm is higher than others.High precision image classification is realized.
作者 王俊岭 彭雯 蔡焱 WANG Junling;PENG Wen;CAI Yan(School of Information, Jiangxi University of Science and Technology, Jiangxi Ganzhou 341000, China;Jiangxi Ganzhou Power Supply Company, Jiangxi Ganzhou 341000, China)
出处 《电视技术》 北大核心 2017年第11期40-45,共6页 Video Engineering
基金 国家自然科学基金项目(61562038 41301480) 江西省教育厅自然科学基金(GJJ13413)
关键词 图像分类 权值 分类精度 image classification weight classification accuracy
  • 相关文献

参考文献5

二级参考文献58

  • 1徐国泉,刘则渊,姜照华.中国碳排放的因素分解模型及实证分析:1995-2004[J].中国人口·资源与环境,2006,16(6):158-161. 被引量:1054
  • 2Jiawei Han,Micheline Kamber.Data mining:Concepts and techniques[M].3 ed.Morgan Kaufmann,2011.
  • 3Kuszyk BS,Bluemke DA,Urban BA,et al.Portal-phase contrast-enhanced helical CT for the detection of malignant hepatic tumors:Sensitivity based on comparison with intraoperative and pathologic findings[J].American Journal of Roentgenology,1996,166(1):91-95.
  • 4Nino-Murcia M,Olcott EW,Jeffrey RJ,et al.Focal liver lesions:Pattern-based classification scheme for enhancement at arterial phase CT[J].Radiology,2000,215(3):746-751.
  • 5Zacharaki EI,Morita N,Bhatt P,et al.Survival analysis of patients with high-grade gliomas based on data mining of imaging variables[J].American Journal of Neuroradiology,2012,33(6):1065-1071.
  • 6Thomas A,Patterson NH,Marcinkiewicz MM,et al.Histology-driven data mining of lipid signatures from multiple imaging mass spectrometry analyses:Application to human colorectal cancer liver metastasis biopsies[J].Analytical Chemistry,2013,85(5):2860-2866.
  • 7Winstanley T,Courvalin P.Expert systems in clinical microbiology[J].Clinical Microbiology Reviews,2011,24(3):515-556.
  • 8Fabregue M,Bringay S,Poncelet P,et al.Mining microarray data to predict the histological grade of a breast cancer[J].Journal of Biomedical Informatics,2011,44:S12-S16.
  • 9Delen D,Walker G,Kadam A.Predicting breast cancer survivability:A comparison of three data mining methods[J].Artificial Intelligence in Medicine,2005,34(2):113-127.
  • 10Takada M,Sugimoto M,Ohno S,et al.Predictions of the pathological response to neoadjuvant chemotherapy in patients with primary breast cancer using a data mining technique[J].Breast Cancer Res Treat,2012,134(2):661-670.

共引文献40

同被引文献13

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部