期刊文献+

基于能耗均衡的物联网感知层分簇路由算法研究 被引量:11

Research on efficient and reliable routing algorithm for internet of things perception layer
下载PDF
导出
摘要 针对物联网感知层无线传感器网络经典分簇LEACH算法中的随机选择簇首,未考虑节点剩余能量、节点位置和节点密集度等问题。将量子蜂群算法引入到物联网感知层无线传感器网络分簇算法中,提出基于量子蜂群算法的WSNs高效可靠分簇算法,达到减少节点能量消耗、延长网络寿命的目的。通过数学推导和仿真实验证明:提出的方法与LEACH和蚁群分簇算法相比,网络能耗更均衡、簇头节点能耗最低、网络连通性能和可靠性更好。其中簇头节点能耗比LEACH、ACO路由分簇算法降低了62.5%和34.4%。 In view of the random selection of cluster heads in the classical clustering LEACH algorithm of Internet of things perception layer wireless sensor networks(WSNs),which does not consider the residual energy of the node,the node position and the node density.In this paper,we introduce the quantum bee colony algorithm into the clustering algorithm of wireless sensor networks,and propose an efficient and reliable clustering algorithm based on the WSNs algorithm,which can reduce the energy consumption of nodes and prolong the network lifetime.Through mathematical derivation and simulation experiments prove that compared with LEACH and ant colony clustering algorithm,the proposed method is more balanced in energy consumption,the lowest energy consumption of cluster head nodes,better network connectivity and reliability.Among them,the energy consumption of cluster head nodes the proposed algorithm is better than LEACH,ACO routing clustering algorithm is reduced by 62.5% and 34.4%.
作者 曹莉 乐英高 骆忠强 任小洪 唐玲 熊鹏文 CAO Li;YUE Yinggao;LUO Zhongqiang;REN Xiaohong;TANG Ling;XIONG Pengwen(School of Automation and Electronic Information, Sichuan University of Science and Engineering, Zigong, 643000;School of Information Engineering, Nanchang University, Nanehang, 330031)
出处 《电视技术》 北大核心 2017年第11期151-157,共7页 Video Engineering
基金 国家自然科学基金项目(61663027) 四川省科技计划项目(2017GZ0068) 四川省科技厅项目(2015TD0022) 四川省教育厅项目(14ZB0210) 企业信息化与物联网测控技术四川省高校重点实验室项目(2014WYJ04) 四川理工学院人才引进项目
关键词 物联网 路由算法 量子蜂群算法 高效 可靠性 Internet of things routing algorithm quantum bee colony algorithm high efficiency reliability
  • 相关文献

参考文献9

二级参考文献94

共引文献202

同被引文献118

引证文献11

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部