期刊文献+

统一的数字几何处理框架 被引量:17

A Unified Framework for Digital Geometry Processing
下载PDF
导出
摘要 随着三维几何模型在工业界的广泛应用 ,处理几何信号的算法变得越来越重要 .尽管近几年数字几何处理研究有了很大的进展 ,仍然缺乏一个类似于数字图像处理的统一解决方案 .该文提出了任意网格的数字信号处理框架 ,很好地满足了这一需求 .该框架的核心思想是通过为任意网格模型构造一个全局球面 (或平面 )参数化 ,把模型的所有属性转化为定义在球面 (或平面 )上的信号 ,然后采用球面 (或平面 )正交分析工具对这些信号做分析处理 .在这个框架下 ,所有的数字图像处理技术都可以被扩展到网格模型 .该文还给出了包括滤波。 With the increasing use of 3D geometry in industry, algorithms processing geometric signals become more and more important. Despite the promising recent progress of digital geometry processing, it still lacks a unified solution to address all issues of geometry like digital image processing. With solid theoretic foundation, the framework for digital signal processing over arbitrary meshes presented in this paper meets this requirement. The key idea of the framework is to construct global spherical (or planar) parameterizations for meshes, transform all attributes of meshes into spherical (or planar) signals and use spherical (or planar) orthonormal analysis tool to process these signals. With the framework, all image processing techniques can be extended to 3D meshes. This paper also describes how to perform signal filtering, multi resolution editing and geometry compression and gives some experimental results.
出处 《计算机学报》 EI CSCD 北大核心 2002年第9期905-909,共5页 Chinese Journal of Computers
基金 国家自然科学基金重点项目 (60 0 3 3 0 10 ) 国家创新群体科学基金(60 0 2 12 0 1)资助
关键词 数字几何处理框架 网格 参数化 滤波 多分辨率编辑 计算机图形学 数字图像处理 digital geometry processing, mesh, parameterization, filtering, multi resolution editing
  • 相关文献

参考文献18

  • 1[1]Kobbelt L, Taubin G. Geometric signal processing on large polyhedral meshes. In: SIGGRAPH'2001 Course Notes, Course 17, Los Angeles, California, 2001
  • 2[2]Sweldens W, Schroder P. Digital geometric signal processing.In:SIGGRAPH'2001 Course Notes, Course 50, Los Angeles, California, 2001
  • 3[3]Wei L Y, Levoy M. Texture synthesis over arbitrary manifold surfaces. In: Proc SIGGRAPH'2001, Los Angeles, California, 2001.355-360
  • 4[4]Pauly M, Gross M. Spectral processing of point-sampled geometry. In: Proc SIGGRAPH'2001, Los Angeles, California, 2001. 379-386
  • 5[5]Schroder P, Sweldens W. Spherical wavelets: Efficiently representing functions on the sphere. In:Proc SIGGRAPH'95, Los Angeles, California, 1995.161-172
  • 6[6]Taubin G. A signal processing approach to fair surface design. In:Proc SIGGRAPH'95, Los Angeles, California, 1995. 351-358
  • 7[7]Karni Z, Gotsman C. Spectral compression of mesh geometry. In:Proc SIGGRAPH'2000, New Orleans, Louisana, 2000. 279-286
  • 8[8]Kobbelt L, Campagna S, Vosatz J et al. Interactive multiresolution modeling on arbitrary meshes. In: Proc SIGGRAPH'98, Orlando, Florida, 1998. 105-114
  • 9[9]Guskov I, Sweldens W, Schroder P. Multiresolution signal processing for meshes. In: Proc SIGGRAPH'99, Los Angeles, California,1999. 325-334
  • 10[10]Lounsbery M, DeRose T, Warren J. Multiresolution analysis for surfaces of arbitrary topological types. ACM Trans Graphics, 1997, 16(1):34-73

同被引文献321

引证文献17

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部