期刊文献+

车载铅酸电池的五段式充电修复方法

Five segments charging repair method for vehicle lead-acid battery
下载PDF
导出
摘要 在分析车载铅酸电池硫酸盐化机制的基础上,提出五段式充电修复方法。该方法将充电过程分为脉冲、恒流、恒压、活化和浮充等5个阶段,介绍充电脉冲宽度、时间间隔、放电时间、充电电流、恒压和活化充电电压等参数。搭建实验验证平台,对不同型号和使用年限的车载铅酸电池进行充电修复实验,测量充电修复前后的内阻、冷启动电流和使用寿命。该方法可将车载铅酸电池的内阻减小2%~33%,最大冷启动电流提高7~72 A,输出电压提高约0.8 V,使用寿命延长6~12个月。 The five segments charging repair method was put forward, based on the analysis of lead-acid starter batteries vulcanization mechanism. The method of charging accumulator was divided into five segments, which contained pulse, galvanostatic, potentiostatic,activation and floating charge. The parameters of the charging pulse width, time interval, discharge time, charging current, constant pressure and floating charge voltage were introduced. Through building a charging verification platform,the charging and repairing experiments of vehicle lead-acid battery with different types and years of service life were carried out. The internal resistance before and after charging repair, cold start current and service life were measured. The five segments charging repair method could reduce the 2% -33% internal resistance of vehicle lead-acid battery,the highest cold start current was increased by 7 -72 A and the output voltage was increased about 0. 8 V, then the service life was prolonged for 6 - 12 months.
作者 蔡黎 代妮娜 邓明 邱刚 CAI Li1, DAI Ni-na1,DENG Ming2, QIU Gang1(1. Chongqing Three Gorges University, Signal and Information Processing Key Laboratory, Chongqing 404000, China ; 2. Research and Development Center Room, Chongqing Changan Industry (Group) Co., Ltd., Chongqing 401120, China)
出处 《电池》 CAS CSCD 北大核心 2018年第2期104-106,共3页 Battery Bimonthly
基金 重庆市创新团队资助(渝科发2016[187]号) 重庆市教委科学技术基金(KJ1710249) 重庆三峡学院青年基金(16QN12 16QN13)
关键词 车载铅酸电池 充电 脉冲 恒压 恒流 vehicle lead-acid battery charge pulse potentiostatic galvanostatic
  • 相关文献

参考文献2

二级参考文献14

  • 1Nakamupa K, Shiomi M, Takahashi K, et al. Failure modes of valve-regulated lead/acid batteries [J]. Journal of Power Sources, 1996, 59:153- 157.
  • 2Shiomi M, Funato T, Nakamura K, et al. Effects of carbon in negative plates on cycle-life performance of valve-regulated lead/acid batteries [J]. Journal of Power Sources, 1997, 64: 147-152.
  • 3Fernfindez M, Valenciano J, Trinidad F, et al. The use of activated carbon and graphite for the development of lead-acid batteries for hybrid vehicle applications [J]. Journal of Power Sources, 2010, 195: 4458-4469.
  • 4Boden D R Loosemore D V, Spense M A, et al.Optimization studies of carbon additives to negative active material for the purpose of extending the life of VRLA batteries in high-rate partial-state- of-charge operation [J]. Journal of Power Sources, 2010, 195: 4470-4493.
  • 5Geim A K, Novoselov K S. The rise of grapheme [J]. Nature Materials, 2007, 6:183-191.
  • 6Geim A K. Graphene: status and prospects [J]. Science, 2009, 324: 1530-1534.
  • 7Nirmalraj P N, Lutz T, Kumar S, et al. Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks [J]. Nano Letters, 2011, 11:16 -22.
  • 8Zhou X F, Wang F, Zhu Y M, et al. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries [J]. Journal of Materials Chemistry, 2011, 21: 3353-3358.
  • 9Wang X Y, Zhou X F, Yao K, et al. A SnOjgraphene composite as a high stability electrode for lithium ion batteries [J]. Carbon, 2011, 49: 133-39.
  • 10Fan N, Li X H, Li H, et al. The application of spray drying method in valve-regulated lead-acid battery. Journal of Power Sources, 2013, 223, 114-118.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部