期刊文献+

基于ReLU函数的卷积神经网络的花卉识别算法 被引量:21

A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function
下载PDF
导出
摘要 目前对于花卉识别的工作较少,且在已有实验结果中,识别准确率和识别计算速度偏低,需要改进算法、改善实验结果。卷积神经网络由于其可以将图像直接作为输入对象从而避免人工提取特征过程的误差,且在各种外物因素下(光照、旋转、遮挡等)具有良好的鲁棒性,所以在图像识别方面具有巨大的优势。因此选取卷积神经网络对花卉进行识别。在传统卷积神经网络中,一般选用Sigmoid函数作为激活函数,但是使用这种函数需要进行预训练,否则将会出现梯度消失无法收敛的问题。而采用近似生物神经激活函数ReLU则可以避免这一问题,提高机器学习的效果和速度。最终达到了92.5%的识别正确率。 There is less work on flower recognition presently, and in the existing experiments, the recognition accuracy and recognition calculation speed are low, so it is needed to improve the algorithm and experimental results. Convolution neural network has robustness in various external factors ( illumination, rotation, occlusion, etc. ) and great advantages in image recognition, which can be selected for rec- ognition of flower. In traditional convolution neural network, the Sigmoid function is normally used as the activation function, but it needs to be pre-trained,otherwise there will exist the problem of gradient vanishing and not converging. ReLU function,which is a kind of ap- proximate biological nerve activation functiun,is applied to improve the effect and speed of machine learning and achieves the 92.5% recognition accuracy finally.
作者 郭子琰 舒心 刘常燕 李雷 GUO Zi-yan;SHU Xin;LIU Chang-yah;LI Lei(Nanjing University of Posts and Telecommunications ,Nanjing 210023 ,China)
机构地区 南京邮电大学
出处 《计算机技术与发展》 2018年第5期154-157,163,共5页 Computer Technology and Development
基金 国家自然科学基金(61070234 61071167 61373137) 国家大学生创新创业训练计划项目(SZDG2016024)
关键词 ReLU函数 卷积神经网络 花卉识别 近似生物神经激活函数 ReLU CNN recognition of flower approximate biological nerve activation function
  • 相关文献

参考文献5

二级参考文献53

  • 1叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 2Guyer D E, Miles G E, Gaultney L D, et al. Application of machine vision to shape analysis in leaf and plant identi- fication[ J]. Transaction of the ASABE, 1993,36 ( 1 ) : 163-171.
  • 3Im C, Nishida H, Kunii T L. Recognizing plant species by leaf shapes-a case study of the Acer family [ C ]//Proceed- ings of 14th International Conference on Pattern Recogni- tion. Brisbane, IEEE. 1998,2 : 1171-1173.
  • 4Oide M, Ninomiya S. Discrimination of soybean leaflet shape by neural networks with image input [ J]. Computers and Electronics in Agriculture, 2000,29(1-2) :59-72.
  • 5Soderkvist O J O. Computer Vision Classification of Leaves from Swedish Trees [ D ]. Linkoping: Linkoping Universi- ty, 2001.
  • 6Ling H, Jacobs D W. Shape classification using the inner- distance[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 (2) :286-299.
  • 7Felzenszwalb P F, Schwartz J D. Hierarchical matching of deformable shapes [ C ]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR'07). 2007: 1-8.
  • 8Zhang Shah-wen, Lei Ying-ke, Dong Tian-bao, et al. La- bel propagation based supervised locality projection analy- sis for plant leaf classification [ J ]. Pattern Recognition, 2013,46 (7) : 1891-1897.
  • 9Hubel D H, Wiesel T N. Receptive fields of single neu- rones in the cat' s striate cortex [ J ]. The Journal of physi- ology, 1959,148 (3) :574-591.
  • 10Kunihiko Fukushima. Neocognitron: A self-organizing neu- ral network model for a mechanism of pattern recognition unaffected by shift in position[ J]. Biological Cybernetics, 1980,36(4) :193-202.

共引文献101

同被引文献149

引证文献21

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部