期刊文献+

超声刺激参数在超声神经调控中的作用 被引量:4

Effects of ultrasound stimulation parameters on neuromodulation
下载PDF
导出
摘要 超声神经调控作为一种新型的非侵入型刺激脑神经的技术,受到越来越多的关注。为了能将这项技术更精准地用于临床,科学家们做了大量的离体和在体动物实验研究,相关研究结果表明:超声波的强度、频率、持续时间、声脉冲群重复频率及照射靶点的区域尺寸是超声刺激效应的影响因素,调节这些超声刺激参数可使得被刺激部位的中枢神经产生兴奋或抑制效应,可进行可逆的神经调控。为了进一步揭示超声刺激参数和神经调控效应之间的关系,本文首先简单阐述了超声神经调控的发展历程、可能的神经作用机制,着重总结了超声刺激参数对神经调控的影响,并对未来超声神经调控研究方向进行了初步展望。 In recent years, ultrasonic neuromodulation, as a new non-invasive technique to stimulate the brain, has received more and more attentions. In order to be able to use this technique more accurately for clinical application, scientists have done a lot of in vitro and in vivo animal studies. The results of these related studies showed that ultrasonic intensity,frequency, duration, pulse repetition frequency and the regional size of the irradiated target were the factors affecting the ultrasound stimulation effect, which indicated that we can adjust these ultrasonic stimulation parameters to make the central nervous system of the stimulated site produce excitatory or inhibitory effect, achieving reversible neuromodulation. In order to further reveal the relationship between the ultrasonic stimulation parameters and the effect of ultrasonic neuromodulation,herein we briefly describe the developmental process of ultrasound neuromodulation and its possible neural mechanisms,and focus on summarizing the effects of ultrasonic stimulation parameters on neuromodulation, and make preliminary prospect of future research on ultrasonic neuromodulation.
作者 王君 随力 蔡爱楠 吴永亮 WANG Jun, SUI Li, CAI Ainan, WU Yongliang(School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, Chin)
出处 《中国医学物理学杂志》 CSCD 2018年第2期236-242,共7页 Chinese Journal of Medical Physics
基金 国家自然科学基金(11179015) 上海理工大学科技发展项目(16KJFZ107 2017KJFZ160)
关键词 脑神经 超声刺激参数 神经调控 综述 cranial nerve ultrasonic stimulation parameter neuromodulation review
  • 相关文献

参考文献3

二级参考文献33

  • 1Scanziani M, Hausser M. Electrophysiology in the age of light. Nature, 2009, 461(7266): 930~939.
  • 2Cohen LB, Salzberg BM. Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol, 1978. 83:35-88.
  • 3Crick FH. Thinking about the brain. Sci Am, 1979, 241(3): 219-232.
  • 4Tsien RY. The green fluorescent protein. Annu Rev Biochem, 1998, 67:509-544.
  • 5Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science, 1990, 248(4951): 73-76.
  • 6Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc NaU Acad Sci USA, 2003, 100(24): 13940~13945.
  • 7Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science, 1994, 263(5148): 802-805.
  • 8Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ. Advances in light microscopy for neuroscience. Annu Rev Neurosci, 2009, 32:435-506.
  • 9Margrie TW, Meyer AH, Caputi A, Monyer H, Hasan MT, Schaefer AT, Denk W, Brecht M. Targeted whole-cell recordings in the mammalian brain in vivo. Neuron, 2003, 39(6): 911~918.
  • 10Marshel JH, Mori T, Nielsen K J, Callaway EM. single neuronal networks for gene expression labeling in vivo. Neuron, 2010, 67(4): 562~574.

共引文献13

同被引文献16

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部