摘要
The underlying mechanism of the spectral cleaning effect of the cross-polarized wave(XPW) generation process was theoretically investigated. This study shows that the spectral noise of an input spectrum can be removed in the XPW generation process and that the spectral cleaning effect depends on the characteristics of the input pulses, such as the chirp and Fourier-transform-limited duration of the initial pulse, and the modulation amplitude and frequency of the spectral noise. Though these factors codetermine the output spectrum of the XPW generation process, the spectral cleaning effect is mainly affected by the initial pulse chirp. The smoothing of the spectrum in the XPW generation process leads to a significant enhancement of the coherent contrast.
The underlying mechanism of the spectral cleaning effect of the cross-polarized wave(XPW) generation process was theoretically investigated. This study shows that the spectral noise of an input spectrum can be removed in the XPW generation process and that the spectral cleaning effect depends on the characteristics of the input pulses, such as the chirp and Fourier-transform-limited duration of the initial pulse, and the modulation amplitude and frequency of the spectral noise. Though these factors codetermine the output spectrum of the XPW generation process, the spectral cleaning effect is mainly affected by the initial pulse chirp. The smoothing of the spectrum in the XPW generation process leads to a significant enhancement of the coherent contrast.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.11127901,61521093,and 61505234)
the International S&T Cooperation of Program of China(Grant No.2016YFE0119300)
the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB160301)
the Youth Innovation Promotion Association,Chinese Academy of Sciences