期刊文献+

多任务处理协同进化粒子群算法 被引量:7

Co-evolutionary Particle Swarm Optimization for Multitasking
下载PDF
导出
摘要 粒子群算法及其改进算法专注于单任务的求解.随着电子商务的发展,在线服务器在某一时刻需要同时处理来自多个用户的服务请求,即多任务处理.区别于以往的并行计算机,文中充分挖掘粒子群算法的"隐并行性",并引入协同进化机制,在同一搜索空间根据任务个数设置不同的子种群,各子种群以一定的概率相互传递有效信息,最后提出基于多任务处理协同进化粒子群算法(CPSOM),并将CPSOM应用于多任务连续型函数优化问题、多任务离散型属性选择问题以及多任务约束工程优化问题.仿真实验表明,在CPSOM多任务环境中,不同任务之间确实存在有效信息的传递,不同任务之间的相互协作不仅可以提高解的质量,而且可以加快各优化问题的收敛速度. The traditional particle swarm optimization( PSO) and its improved version aim to tackle the single task. With the development of electronic business,online severs need to deal with a batch of requests simultaneously,i.e. multitasking. Different from the parallel computer,the implicit parallelism of PSO is fully exploited, and co-evolution theory is introduced for multitasking. In the multitasking environment,different tasks correspond to different subpopulations, and the useful information is transferred from one subpopulation to another with a certain probability. Thus,co-evolutionary PSO for multitasking( CPSOM) is proposed in this paper. To verify the effectiveness of the proposed algorithm,CPSOM is used to solve a batch of function test problems,feature selection problems and constrained engineering optimization problems. Experimental results show that the useful information can be autonomously transferred from one task to another in the CPSOM environment. Moreover,cooperation of different tasks enhance the solution quality and speed up the convergence.
作者 程美英 钱乾 倪志伟 朱旭辉 CHENG Meiying1, QIAN Qian2, NI Zhiwei3, ZHU Xuhui3,4(1. Business School, Huzhou University, Huzhou 313000; 2. School of Teacher Education, Huzhou University, Huzhou 313000 ;3. Key Laboratory of Process Optimization and Intelligent Decision-Making of Ministry of Education, School of Management, Hefei University of Technology, Hefei 230009 ;4. Department of Industrial and Systems Engineering, Russ College of Engineering and Technology, Ohio University, Athens 4570)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2018年第4期322-334,共13页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金重大项目(No.71490725) 国家自然科学基金重大研究计划培育项目(No.91546108)资助~~
关键词 多任务处理 粒子群算法(PSO) 协同进化 函数优化 属性选择 工程应用 Multitasking Particle Swarm Optimization ( PSO) Co-evolution Function Optimization Attribute Selection Engineering Application
  • 相关文献

参考文献4

二级参考文献46

  • 1熊伟清,魏平,赵杰煜.信号传递的二元蚁群算法[J].模式识别与人工智能,2007,20(1):15-20. 被引量:10
  • 2闫光辉.一种高效的分形属性选择算法[J].兰州交通大学学报,2007,26(1):6-10. 被引量:4
  • 3尚玉昌 蔡晓明.普通生态学[M].北京:北京大学出版社,1996..
  • 4[1]Himmelblau, D.M. Applied Nonlinear Programming. New York: McGraw-Hill, Inc., 1972.
  • 5[2]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Readings, MA: Addison-Wesley Publishing Company, 1989.
  • 6[3]Michalewicz, Z., Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation Journal, 1996,4(1):1~32.
  • 7[4]Powell, D., Skolnick, M. Using genetic algorithms in engineering design optimization with nonlinear constraints. In: Forest, S., ed. Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1993. 424~430.
  • 8[5]Deb, K., Agrawal, S. A niched-penalty approach for constraint handling in genetic algorithms. In: Montana, D., ed. Proceedings of the ICANNGA-99. Portoroz, Slovenia, 1999. 234~239.
  • 9[6]Schoenauer, M., Michalewicz, Z. Boundary operators for constrained optimization problems. In: Baeck, T., ed. Proceedings of the 7th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997. 322~329.
  • 10[7]Michalewicz, Z., Nazhiyath, G., Michalewicz, M. A note on usefulness of geometrical crossover for numerical optimization problems. In: Angeline, P., Baeck, T., eds. Proceedings of the 5th Annual Conference on Evolutionary Programming. Cambridge, MA: MIT Press, 1996. 325~331.

共引文献167

同被引文献35

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部