摘要
针对生产过程中质量特性数据存在个别异常以及离群值的情形,采用中位数统计量(X)代替传统均值(X)统计量,提出一种累积和(Cumulative Sum,CUSUM)X控制图来监控过程均值的偏移。采用马尔科夫链方法,首先构建CUSuMx控制图的状态转移矩阵,推导各状态的转移概率,进一步可推导出CUSUMX控制图的链长分布特性。通过最优化过程处于失控状态下的CUSUMX控制图的平均运行链长(Average Run Length,ARL)指标,获得控制图的最优决策变量和性能指标。仿真结果表明,CUSUMX控制图优于传统的休哈特(Shewhart)X以及指数加权滑动平均(Exponentially Weighted Moving Average,EWMA)X控制图,尤其针对较小的均值偏移,其性能优势更加明显。
Abstract: Considering the outliers in the dataset of the quality character in production processes, the statistic median (X) is used instead of the mean (X) and a CUSUM (Cumulative Sum)X chart is proposed to monitor the process mean shift. The transition probability matrix of the CUSUM X chart are first obtained using the Markov chain method, and the run length (RL) properties of the CUSUM X chart can be further obtained using this method. The optimal parameters and properties of the CUSUM X chart are given through the minimization of the out-of-control ARL (Average Run Length) of the CUSUM X chart. The simulation results show that the CUSUM X chart outperforms the Shewhart and EWMA (Exponentially Weighted Moving Average) X charts, especially for smaller mean shifts.
作者
胡雪龙
周晓剑
黄卫东
蒋国平
HU Xue-long, ZHOU Xiao-jian ,HUANG Wei-dong ,JIANG Guo-ping(1. School of Management, Nanjing University of Posts and Telecommunications, Jiangsu Nanjing 210003, China; 2. School of Automation, Nanjing University of Posts and Telecommunications, Jiangsu Nanjing 210046, Chin)
出处
《数理统计与管理》
CSSCI
北大核心
2018年第3期469-477,共9页
Journal of Applied Statistics and Management
基金
国家自然科学基金资助项目(71401080,71671093)
江苏省自然科学基金(BK20170894)
教育部人文社会科学青年基金资助项目(17YJC630043)
南京邮电大学人文社科基金资助项目(NYY217007)
国自基金孵化项目(NY218041)