期刊文献+

CUSUM中位数控制图设计 被引量:9

Design of the CUSUM Median Chart
原文传递
导出
摘要 针对生产过程中质量特性数据存在个别异常以及离群值的情形,采用中位数统计量(X)代替传统均值(X)统计量,提出一种累积和(Cumulative Sum,CUSUM)X控制图来监控过程均值的偏移。采用马尔科夫链方法,首先构建CUSuMx控制图的状态转移矩阵,推导各状态的转移概率,进一步可推导出CUSUMX控制图的链长分布特性。通过最优化过程处于失控状态下的CUSUMX控制图的平均运行链长(Average Run Length,ARL)指标,获得控制图的最优决策变量和性能指标。仿真结果表明,CUSUMX控制图优于传统的休哈特(Shewhart)X以及指数加权滑动平均(Exponentially Weighted Moving Average,EWMA)X控制图,尤其针对较小的均值偏移,其性能优势更加明显。 Abstract: Considering the outliers in the dataset of the quality character in production processes, the statistic median (X) is used instead of the mean (X) and a CUSUM (Cumulative Sum)X chart is proposed to monitor the process mean shift. The transition probability matrix of the CUSUM X chart are first obtained using the Markov chain method, and the run length (RL) properties of the CUSUM X chart can be further obtained using this method. The optimal parameters and properties of the CUSUM X chart are given through the minimization of the out-of-control ARL (Average Run Length) of the CUSUM X chart. The simulation results show that the CUSUM X chart outperforms the Shewhart and EWMA (Exponentially Weighted Moving Average) X charts, especially for smaller mean shifts.
作者 胡雪龙 周晓剑 黄卫东 蒋国平 HU Xue-long, ZHOU Xiao-jian ,HUANG Wei-dong ,JIANG Guo-ping(1. School of Management, Nanjing University of Posts and Telecommunications, Jiangsu Nanjing 210003, China; 2. School of Automation, Nanjing University of Posts and Telecommunications, Jiangsu Nanjing 210046, Chin)
出处 《数理统计与管理》 CSSCI 北大核心 2018年第3期469-477,共9页 Journal of Applied Statistics and Management
基金 国家自然科学基金资助项目(71401080,71671093) 江苏省自然科学基金(BK20170894) 教育部人文社会科学青年基金资助项目(17YJC630043) 南京邮电大学人文社科基金资助项目(NYY217007) 国自基金孵化项目(NY218041)
关键词 中位数 累积和中位数控制图 平均运行链长 median CUSUM median chart average run length
  • 相关文献

参考文献3

二级参考文献21

  • 1吉明明,赵选民,唐伟广.可变抽样区间的非正态EWMA均值控制图[J].系统工程,2006,24(11):114-119. 被引量:11
  • 2吉明明,孙浩.具有可变抽样区间的EWMA标准差控制图[J].数学的实践与认识,2007,37(12):90-96. 被引量:9
  • 3Hunter, J.S. The Exponentially Weighed Moving Average [J]. Journal of Quality Technology, 1986, (18): 203-210.
  • 4Crowder, S.V. Design of Exponential Weighted Moving Average Charts [J]. Journal of Quality Technology, 1989, (21): 155-162.
  • 5Zhang, N.F. A statistical control chart for stationary process data [J]. Technometrics, 1998, 40 (1): 24-38.
  • 6Pandit, S.M., and Wu, S.M. 李昌琪,荣国俊译. Time Series and System Analysis With Applications [M]. 北京:机械工业出版社, 1983.
  • 7Chen K, Jin Z. Local polynomial regression analysis of clustered data [J]. Biometrika, 2005, 92(1): 59 74.
  • 8Li Y. Efficient semiparametric regression for longitudinal data with nonparametric covariance esti- mation [J]. Biometrika, 2011, 98(2): 355-370.
  • 9Liang K Y, Zeger S L. Longitudinal data analysis using generalized linear models [J]. Biometrika, 1986, 73(1): 13-22.
  • 10Ma S, Yang L, Carroll R. A simultaneous confidence band for sparse longitudinal regression [J]. Statistica Sinica, 2012, 22:95 122.

共引文献15

同被引文献25

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部