期刊文献+

基于离散粒子群算法的凸多模态高光谱图像端元提取研究 被引量:4

Piecewise Convex Mulutiple-model Hyperspectral Imagery ENDmember-extraction based on Discrete Particle Swarm Optimization
原文传递
导出
摘要 为了提高以凸几何模型为基础的标准线性解混模型的计算精度,利用离散粒子群算法((Discrete Particle Swarm Optimization,D-PSO)来求解分段凸多模态高光谱图像端元提取。D-PSO为智能随机搜索算法,适合求解非凸函数的全局最优解,减少由凸分段数不确定性引起的解混误差。选取了16个地物作为端元,利用D-PSO方法求得其解混丰度反演结果,实验结果表明:端元位置与地面真值图上的端元位置互相匹配,D-PSO方法能够更有效地检测出高光谱图像中的目标,是一种行之有效的解混方法。 Piecewise COnvex Multiple-Model ENDmember(PCOMMEND)spectral unmixing can well solve unmixing of the nonconvex hyperspectral data,which improves the calculation accuracy of the standard linear mixed model based on the convex geometry model.the number of piecewise convex is not sure in the practical application,which limits the calculation ccuracy of unmixing and the wrong endmembers will sometimes extracted,in view of the situation,the Discrete Particle Swarm Optimization(D-PSO)is proposed to unmix the piecewise convex mulutiple-model hyperspectral imagery,D-PSO is the intelligent algorithm of random search,and is able to find the global optimal solution of convex function,which reduce the unmixing error caused by the uncertainty number of the convex section,experiments on the simulative data and real data has indicate D-PSO improves the accuracy of the extracting endmember and estimating the proportion.
作者 刘爱林 郭宝平 李岩山 Liu Ailin1,2, Guo Baoping1, Li Yanshan3(1.College of Optoelectronic and Engineering ,Key Laboratory of Optoelectronic Devices and System s fo Ministry of Education , Shenzhen University, Shenzhen 518060, China 2.College of Electronic and InJbrmation , Hunan Tecnology and Engineering University ,Yongzhou 425100,China 3.College fo information and Engineering, Shenzhen University, Shenzhen 518060, China)
出处 《遥感技术与应用》 CSCD 北大核心 2018年第2期227-232,共6页 Remote Sensing Technology and Application
基金 国家重大科学仪器设备开发专项(2014YQ230659) 湖南省自然科学基金资助项目(13JJ6079) 湖南省永州市科技计划项目(2015a20)资助 湖南科技学院重点学科建设项目资助(电路与系统) 国家自然科学基金项目(61771319 61401286) 广东省自然科学基金项目(2017A030313343) 深圳市科技计划项目(JCYJ20160520173822387 JCYJ20160307143441261) 湖南省教育厅资助科研项目(12A054)
关键词 高光谱图像 离散粒子群算法 分段凸多模态 解混 Hyperspectral imagery Particle swarm optimization Piece-wise convex Unmixing
  • 相关文献

参考文献7

二级参考文献70

  • 1陈子玄,武文波.基于线性混合模型的端元提取方法综述[J].测绘科学,2008,33(S1):49-51. 被引量:6
  • 2赵春晖,刘春红.超谱遥感图像降维方法研究现状与分析[J].中国空间科学技术,2004,24(5):28-36. 被引量:19
  • 3谭炳香,李增元,陈尔学,庞勇.EO-1 Hyperion高光谱数据的预处理[J].遥感信息,2005,27(6):36-41. 被引量:131
  • 4Boardman J W, Kruse F A, Green R O. Mapping Target Signa tures via Partial Unmixing of AVIRIS Data: in Summaries[J]. Fifth JPL Airborne Earth Science Workshop, 1995,1:23-26.
  • 5Winter M E. N-FINDR: An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data [C]//Proeeedings of SPIE Conference Imaging Spectrometry, 1999,3753:266-275.
  • 6Craig M D. Minimum volume Transforms for Remotely Sensed Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(3) :542-552.
  • 7Jose M P N,Jose M. Bioucas D. Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspeetral Data[J]. IEEE Transactions on Geoseience and Remote Sensing, 2005, 43 (4) ,898-910.
  • 8Zare A, Gader P. Endmember Detection Using the Dirichlet Process [C]//Proceedings of the IEEE: 19th International Conference on Pattern Recognition, 2008 : 1-4.
  • 9Banerjee A, Burlina P, Broadwater J. A Machine Learning Approach for Finding Hyperspectral Endmembers[C]//IEEE Processing International Geoscience and Remote Sensing Symposium 2007 (IGARSS, 07), 2007,23-27: 3817-3820.
  • 10Reed I S, Yu X. Adaptive Multiple-band CFAR Detection of an Optical Pattern with Unknown Spectral Distribution[J]. IEEE Transactions on Acoustic, Speech and Signal Process, 1990,38(10) : 1760-1770.

共引文献64

同被引文献46

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部