期刊文献+

恩施地区人群葡萄糖激酶调控蛋白基因rs1260326位点多态性与原发性痛风及高尿酸血症的相关性研究 被引量:5

Correlation of polymorphism of rs1260326 loci in glucokinase regulatory protein gene with primary gout and hyperuricemia in Enshi population
原文传递
导出
摘要 目的探讨葡萄糖激酶调控蛋白(GCKR)基因rs1260326位点多态性与恩施市原发性痛风和高尿酸血症的相关性。方法收集原发性痛风患者158例、高尿酸血症患者190例和健康对照者104名。采用Hi-单核苷酸多态性(SNP)结合多重PCR技术和高通量测序技术,对该位点进行基因分析,分析不同等位基因或基因型与原发性痛风和高尿酸血症易感性的关系。符合正态分布的计量资料比较用t检验或方差分析;计数资料比较用χ2检验。用Logistic回归分析评估痛风与高尿酸血症发病的相对风险。结果rs1260326基因型CC、TC、TT在痛风组中频率分别为8.8%(14/158)、60.8%(96/158)、30.4%(48/158),在高尿酸血症组中分别为15.8%(30/190)、54.7%(104/190)、29.5%(56/190),在健康对照组中分别为21.2%(22/104)、45.1%(47/104)、33.7%(35/104),痛风组与健康对照组基因型分布差异有统计学意义(χ2=9.895,P=0.007),高尿酸血症组与健康对照组基因型分布差异无统计学意义(χ2=2.665,P=0.264)。等位基因C和T在痛风组中频率分别为39.2%(124/316)和60.8%(192/316),高尿酸血症组分别为43.2%(164/380)和56.8%(216/380),健康对照组分别为43.8%(91/208)和56.2%(117/208)。等位基因T是痛风的易感基因。基因型TC、TT、TC+TT使患痛风的危险性分别上升3.848、2.935、2.969倍。Logistic回归分析表明rs1260326位点SNP与高尿酸血症没有易感性。结论GCKR基因rs1260326位点SNP可能与恩施地区原发性痛风的发病相关,而与高尿酸血症没有相关性。 ObjectiveTo investigate the relationship between rs1260326 polymorphism of glucokinase regulatory protein gene and hyperuricemia and primary gout in Enshi area populations.MethodsOne hun-dred and fifty-eight primary gout, 190 hyperuricemia and 104 healthy controls (normal group) in total were collected. Hi-single nucleotide polymorphism (SNP) combined with multiplex polymerase chain reaction (PCR) with next generation sequencing techniques were used for gene polymorphism analysis, and the relationship between different alleles or genotypes and susceptibility to primary gout and hyperuricemia were analyzed. The measurement data and numeration data were statistically analyzed with t test and χ2 test respectively. Logistic regression analysis was used to assess the relative risk of gout and hyperuricemia. ResultsThe frequency of rs1260326 genotype CC, TC, TT was 8.8% (14/158) , 60.8%(96/158), 30.4%(48/158) respectively in gout patients, 15.8%(30/190), 54.7%(104/190), 29.5%(56/190) in hyperuricemia patients, 21.2%(22/104), 45.1% (47/104), 33.7%(35/104) in the normal group, the genotype distribution was significantly different in gout group and normal group (χ2=9.895, P=0.007), and there was no difference between hyperuricemia group and normal group (χ2=2.665, P=0.264). Allele C and T frequency was 39.2%(124/316) and 60.8%(192/316) in gout patients, 43.2%(164/380) and 56.8%(216/380) in hyperuricemia patients, 43.8%(91/208) and 56.2%(117/208) in the normal group. Allele T was the susceptible gene for gout. Logistic regression analysis showed that genotypes TC, TT, TC+TT increased the risk of gout. And Logistic regression analysis showed that rs1260326 single nucleotide polymorphism and hyperuricemia were no susceptibile. ConclusionGlucokinase regulatory protein (GCKR) rs1260326 sin-gle nucleotide polymorphism may be associated with primary gout risk in En Shi area, but has no significant correlation with hyperuricemia.
作者 冯佳 夏燕 田瑞 杨年安 向诗非 周发为 向阳 袁林 Feng Jia;Xia Yan;Tian Rui;Yang Nian'an;Xiang Shifei;Zhou Fawei;Xiang Yang;Yuan Lin(Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi 445000, Chin)
出处 《中华风湿病学杂志》 CAS CSCD 北大核心 2018年第5期293-297,共5页 Chinese Journal of Rheumatology
基金 湖北省重点实验室开放基金(OIR17011A)
关键词 痛风 高尿酸血症 葡萄糖激酶调控蛋白基因 多态性 单核苷酸 Gout Hyperuricemia Glucokinase regulatory protein gene Polymorphism singlenucleotide
  • 相关文献

参考文献7

二级参考文献109

  • 1方卫纲,黄晓明,王玉,陈伟,朱卫国,陈嘉林,曾学军.北京地区部分人群痛风的流行病学调查[J].基础医学与临床,2006,26(7):781-785. 被引量:48
  • 2[1]Vionnet N, Stoffel M, Takeda J, et al. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus[J]. Nature , 1992, 356:721-722.
  • 3[2]Van Schaftingen E. A protein from rat liver confers to glucokinase the property of being antagonistically regulated by fructose 6-phosphate and fructose 1 -phosphate[J].Eur J Bichem, 1989, 179: 179-184.
  • 4[3]Slosberg ED, Desai UJ, Fanelli B, et al. Treatment of type 2 diabetes by adenoviral-mediated overexpression of the glucokinase regulatory protein[J]. Di abetes, 2001, 50(8): 1813-1820.
  • 5[4]Clark DG, Filsell OH, Topping DL, et al. Effects of fructose concentration on carbohydrate metabolism, heat production and substrate cycling in isolated rat hepatocytes[J].Biochem J, 1979, 184: 501-507.
  • 6[5]Elvira Alvarez, Isabel Roncero, Julie A Chowen, et al. Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brai n[J].J Neurochemistry, 2002, 80(1): 45-53.
  • 7[6]Bennett WS, Steitz TA. Glucose-induced conformational change in yeast hexokinase[J].Proc Natl Acad Sci USA, 1978, 75: 4848-4852.
  • 8[7]Charles RST, Harrison RW, Bell GI. Molecular model of human β-cell glucokinase built by analogy to the crystal structure of yeast hexkinase B[J].Diabet es, 1994, 43: 784-791.
  • 9[8]Van Schaftingen E, Vegia-da-Cunha M, Niculescu L, et al. The regulatory protein of glucokinase[J].Bio Soc Trans, 1997, 25(1): 136-140.
  • 10[9]Maria Veiga-da-Cunha, Van Schaftingen E. Identification of fructose 6-Phosphate- and fructose 1-Phosphate-binding residues in the regulatory protein of g lucokinase[J].J Biol Chem, 2002, 277(10): 8466-8473.

共引文献180

同被引文献48

引证文献5

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部