期刊文献+

带有时滞和非线性收获效应的捕食者-食饵系统的空间动力学 被引量:2

Spatial Dynamics in Predator-Prey System with Time Delay and Nonlinear Harvesting Effect
下载PDF
导出
摘要 考虑一类带有时滞和非线性食饵收获效应的捕食者-食饵系统的空间动力学行为,先利用稳定性理论和分支理论得到Hopf分支和Turing分支的条件,再通过数值模拟展示系统存在丰富的动力学行为.数值结果表明,时滞和扩散不仅能影响点状、条状以及点条共存的Turing斑图的形成,而且还影响螺旋波斑图的形成. We considered the spatial dynamic behavior of a predator-prey system with time delay and nonlinear prey harvesting effect.First,we obtained the condition of Hopf bifurcation and Turing bifurcation by using stability theory and bifurcation theory,and then numerical simulations show that the system has rich dynamic behavior.Numerical results show that time delay and diffusion can not only affect the formation of Turing patterns,such as spot,stripe and the coexistence of the two types,but also affect the formation of spiral patterns.
作者 张道祥 孙光讯 徐明丽 陈金琼 周文 ZHANG Daoxiang;SUN Guangxun;XU Mingli;CHEN Jinqiong;ZHOU Wen(School of Mathematics and Statistics , Anhui Normsl Uniwersity , Wuhu 211002, Anhui Prowince , China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第3期515-522,共8页 Journal of Jilin University:Science Edition
基金 国家自然科学基金青年科学基金(批准号:11302002)
关键词 时滞 捕食者-食饵系统 HOPF分支 螺旋波斑图 time delay predator prey system Hopf bifurcation spiral pattern
  • 相关文献

参考文献2

二级参考文献26

  • 1曾志刚,廖晓昕,汪增福.输入向量控制细胞神经网络全局指数稳定[J].控制理论与应用,2006,23(1):86-88. 被引量:3
  • 2周建平,陈红军,王林山.一类变时滞神经网络的全局指数稳定性[J].控制理论与应用,2007,24(3):431-434. 被引量:1
  • 3WANG R, TANG Z. A learning method in Hopfield neural network for combinational optimization problem [J]. Neurocomputing, 2002, 48(4): 1021 - 1024.
  • 4ZHANG J. Global stability analysis in Hoplield neural net- works [J]. Applied Mathematics Letters, 2003, 16(6): 925 - 931.
  • 5ZHAO H. Global exponential stability and periodicity of cellular neural networks with variable delays [J]. Physics Letter A. 2005. 336(4/5): 331 - 341,.
  • 6ZHAO H, WANG L, MAC. Hopf bifurcation and stability analysis on discrete-time Hopfield neural network with delay [J]. Nonlinear Analysis: Real World Applications, 2007, 9(I): 103 - 113.
  • 7CAMPBELL S, Stability and bifurcation of a simple neural network with multiple time delays [J]. Fields Institute Communications, 1999, 21(2): 65 - 79.
  • 8ZHAO H, MAO Z. Boundedness and stability of nonautonomous cel- lular neural networks with reaction-diffusion terms [J]. Mathematics and Computers in Simulation, 2009, 79(2): 1603 - 1617.).
  • 9TURING A. The chemical basis of morphogensis [J]. Philosophical Transactions for the Royal Socierol of London, 1952, 237(641 ): 37 - 72.
  • 10MURRAY J. Mathematical biology: Ⅱ [M] //Spatial Models and Biomedical Applications. Berlin: Springer-Verlag, 2003.

共引文献29

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部