期刊文献+

带有Neumann边界的Kirchhoff问题无穷多径向解的存在性 被引量:5

Existence of infinitely many radial solutions to a Kirchhoff equation with Neumann boundary conditions
下载PDF
导出
摘要 研究了有界区域上带有Neumann边界的Kirchhoff方程解的存在性.在非线性项次临界的条件下,利用喷泉定理,得到了Kirchhoff方程有无穷多个径向解. This paper focuses on the study of the existence of solutions to a Kirchhoff equation in a bounded smooth domain with Neumann boundary conditions. Under the subcritical hypothesis of the nonlinear term, it has obtained infinitely many radial solutions by the Fountain theorem.
作者 郝娅楠 黄永艳 HAO Ya-nan;HUANG Yong-yan(School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Chin)
出处 《云南民族大学学报(自然科学版)》 CAS 2018年第3期212-215,共4页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金(11571209 11671239) 山西省高等学校科技创新基金(2013021001-4 2014021009-1 2015021007)
关键词 KIRCHHOFF方程 喷泉定理 NEUMANN边界 无穷多径向解 Kirchhoff equation fountain theorem Neumann boundary condition infinitely many radial solution
  • 相关文献

参考文献1

二级参考文献29

  • 1Alves, C.O., Correa, F.J.S.A. On existence of solutions for a class of problem involving a nonlinear operator. Comm. Appl. Nonlinear AnaL, 8(2): 43-56 (2001).
  • 2Alves, C.O., Corr@a, F.J., S.A., Figueiredo, G. M. On a class of nonlocal elliptic problems with critical growth. Differ. Equ. Appl., 2(3): 40917 (2010).
  • 3Alves, C.O., Corr@a, F.J.S.A., Ma, T.F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl., 49(1): 85 93 (2005).
  • 4Ambrosetti, A., Colorado, E. Standing waves of some coupled nonlinear Schr6dinger equations. J. Lond. Math. Soc., 75(2): 67-82 (2007).
  • 5Ambrosetti, A., Rabinowitz, P.H. Dual variational methods in critical point theory and applications. J. nct. AnaL, 14:349-381 (1973).
  • 6Andrade, D., Ma, T.F. An operator equation suggested by a class of nonlinear stationary problems. Comm. Appl. Nonlinear Anal., 4(4): 65-71 (1997).
  • 7Anello, G. A uniqueness result for a nonlocal equation of kirchhoff type and some related open problem. J. Math. Anal Appl., 373(1): 248-251 (2011).
  • 8Bartsch, T., Wang,Z.Q., Wei, J. Bound states for a coupled SchSrdinger system. J. Fixed Point Theory Appl., 2(2): 353-367 (2007).
  • 9Chipot, M., Lovat, B. Some remarks on nonlocal elliptic and parabolic problems. In: Proceedings of the Second World Congress of Nonlinear Analysts, Part 7 (Athens, 1996), Vol.30, 1997, 4619-4627.
  • 10Chipot, M., Rodrigues, J.F. On a class of nonlocal nonlinear elliptic problems. RAIRO Moddl. Math. Anal Numdr., 26(3): 447-467 (1992).

共引文献4

同被引文献21

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部