摘要
电能质量问题日益严重,其中电压偏差的危害最为明显。本文提出一种基于改进集成聚类和BP神经网络的电压偏差预测方法。针对单一聚类算法的不足,将AP聚类算法与经典K-means聚类算法结合,形成改进集成聚类算法,实现两类算法的优势互补,该算法包括PCA降维、AP聚类、K-means聚类三步。选择与待预测点相似相近的样本数据集,采用改进集成聚类算法对数据集中的气象数据进行聚类,提取训练样本,最后采用BP神经网络算法建立预测模型。结果表明,该方法预测结果平均相对误差为2.987%,优于传统BP神经网络预测模型以及结合PCA降维的BP神经网络预测模型。
This paper proposes a voltage deviation forecasting method based on improved ensemble clustering andBP neural network. The ensemble algorithm was a combination of principal component analysis ( PCA), affinitypropagation clustering and K-means clustering. Firstly the PCA algorithm was used for lowering the dimensions ofthe meteorological data, and then the improved ensemble cluster analysis is performed on the principal components,and finally the BP neural network for voltage deviation forecasting is adopted. The practical application results provethat the eMAPE of the proposed method is 2. 987%, which is obviously better than that of the traditional BP modeland BP model with PCA.
作者
王知芳
杨秀
潘爱强
陈甜甜
谢真桢
WANG Zhi-fang;YANG Xiu;PAN Ai-qiang;CHEN Tian-tian;XIE Zhen-zhen(College of Electric Engineering,Shanghai University of Electric Power,Shanghai 200090,China;State Grid Shanghai Electric Power Research Institute,Shanghai 200437,China)
出处
《电工电能新技术》
CSCD
北大核心
2018年第5期73-80,共8页
Advanced Technology of Electrical Engineering and Energy
基金
上海市科委地方能力建设计划项目(16020500900)
关键词
电压偏差
改进集成聚类
BP神经网络
气象因素
voltage deviation
improved ensemble clustering
BP neural network
meteorological factor