期刊文献+

基于决策树的Android恶意应用检测方法的研究 被引量:2

Android malware detection method based on decision tree
下载PDF
导出
摘要 Android恶意应用对人们的危害越来越严重,因此,提出一种行之有效的恶意应用检测方法迫在眉睫。在Android系统中,一些敏感Ap I的操作都需要申请相应的权限,要实现某个恶意功能需要多个权限的配合。文中提取了应用程序的权限信息,利用频繁模式挖掘算法Apriori和决策树实现了对应用的检测分类。实验结果表明,该方法可行有效,检测率达90%。 The Android malware for our threaten is becoming more and more serious,so,it is imminent for us to put forward an effective malicious application detection method. In the Android system,some sensitive Ap I operations need to apply for the appropriate permissions. In order to achieve a malicious function,it requires multiple permissions to cooperate. This paper extracted the permissions of the application. In addition,this method achieved the detection classification of applications by Apriori and decision tree. The experimental results show that the method is effective and the detection rate is 90%.
作者 李秀 陆南 陈洲 LI Xiu;LU Nan;CHEN Zhou(Electronic Information School, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu Province, China)
出处 《信息技术》 2018年第5期125-128,共4页 Information Technology
关键词 Android权限 APRIORI 决策树 Android permission Apriori decision tree
  • 相关文献

参考文献7

二级参考文献98

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2SEN S, WANG Jia. Analyzing peer-to-peer traffic across large networks [J]. IEEE/ACM Trans on Networking ,2004,12(2) :219-232.
  • 3GERBERAND A, HOULE J, NGUYEN H,et al. P2P the gorilla in the cable [ C ]//Proc of National Cable and Telecommunications Association(NCTA) , National Show. 2003.
  • 4SEN S, SPATSCKECK O, WANG D. Accurate, scalable in-network identification of P2P traffic using application signatures [ C ]//Proc of the 13th International World Wide Web Conference. 2004: 512-521.
  • 5LIU H, SETIONO R. A probabilistie approach to feature selection [ C]//Proc of International Conference on Machine Learning. 1996: 319-327.
  • 6DAS S. Filters, wrappers and a boosting based hybrid for feature selection[ C]//Proc of the 8th International Conference on Machine Learning. 2001:74-81.
  • 7YUAN Huang, TSENG S S, WU Gang-shan, et al. A two-phase feature selection met hod using both filter and wrapper [ C ]//Proc of IEEE International Conference on Systems, Man, and Cybernetics. 1999 : 132-136.
  • 8KOHAVI R, JOHN G H. Wrappers for feature subset selection [ J ]. Artificial Intelligence Journal, 1997,97( 1-2 ) :273-324.
  • 9KONONENKO I. Estimation attributes: analysis and extensions of RELIEF[ C ]//Proc of European Conference on Machine Learning. 1994 : 171-182.
  • 10HALL M A. Correlation-based feature selection for discrete and numeric class machine learning [ C ]//Pmc of the 17th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 2000:359-366.

共引文献117

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部