期刊文献+

基于时变信道和射频非理想性补偿算法结合的大规模MIMO信道互易性研究

Massive MIMO Channel Reciprocity based on Combination of Time-Varying Channel and RF Non-Ideality Compensation Algorithm
下载PDF
导出
摘要 信道时变性、射频器件非理想性是影响信道互易性的主要因素。目前,独立进行补偿的方法难以充分发挥大规模MIMO的优势。基于AR模型预测模型的信道时变性补偿算法和OTA(Over-The-Air)校准算法的射频非理想性补偿方法,提出了两种时变信道和射频非理想性补偿算法的结合方案,同时实现了补偿射频失真和信道时变造成的信道互易性损失。此外,基于3GPP信道模型,仿真了提出的结合方案。仿真结果表明,结合方案能有效补偿互易性损失,取到了良好效果。 Channel time variability and non-ideality of RF devices are the main factors affecting channel reciprocity. At present, it is difficult for independent compensation to make full use of the advantages of massive MIMO. In consideration of both the channel time variation compensation algorithm based on AR prediction model and radio frequency non-ideality compensation method based on OTA (Over-The-Air) calibration algorithm, a combination scheme of the two time-varying channels and RF non-ideality compensation algorithm is proposed, and meanwhile the compensation for channel-reciprocity loss caused by RF distortion and channel time variation is realized. In addition, based on the 3GPP channel model, the proposed combination scheme is simulated, and the simulation indicates that the combination scheme could effectively compensate reciprocity loss and achieve good results.
作者 邢移单 XING Yi-dan(Zhejiang College, Tongji Univ., Jiaxing Zhejiang 314051, China)
出处 《通信技术》 2018年第5期1003-1009,共7页 Communications Technology
基金 浙江省教育厅一般项目"大规模MIMO的互易性损失分层评估机制及动态补偿方法的研究"(No.Y201636368)~~
关键词 大规模多输入多输出 信道互易性 时变信道 射频非理想性 补偿算法 MIMO (Massive Multiple-Input Multiple-Output) channel reciprocity time-varying channel RF non-ideality compensation algorithm
  • 相关文献

参考文献4

二级参考文献32

  • 1YUKI Y, KAZUNORI H, HIDEAKI S, et al. Analysis and compensation of transmitter IQ imbalances in OFDMA and SC-FDMA systems[J]. IEEE Transactions on Signal Processing, 2009, 57(8): 3119- 3129.
  • 2TUBBAX J, COME B, VAN DER PERRE L, et al. Compensation of IQ imbalance and phase noise in OFDM systems[J]. IEEE Transaction on Wireless Communications, 2005, 4(3):872-877.
  • 3TELATAR E. Capacity of multi-antenna Gaussian channels[J]. Europe Transaction on Telecommunications (ETT), 1999, 10(6): 585-595.
  • 4FOSCHINI G, GANS M. On limits of wireless communications in a fading environment when using multiple antennas[J]. Wireless Personal Communications, 1998.311-335.
  • 5WILLINK T J. Efficient adaptive SVD algorithm for MIMO applications[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 615-622.
  • 6ANDERSEN J B. Array gain and capacity for known random channels with multiple elements arrays at both ends[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(11): 2172-2178.
  • 7COVER T M, THOMAS J A. Elements of Information Theory[M]. New York: Wiley, 1991.
  • 8LEBRUN G, GAO J, FAULKER M. MIMO transmission over a time-varying channel using SVD[J]. IEEE Transaction on Wireless Communications, 2005, 4(2):757-764.
  • 9MARZETFA T L, HOCHWALD B M. Fast transfer of channel state information in wireless systems[J]. IEEE Transactions on Signal Processing, 2006, 54(5): 1268-1278.
  • 10ESMAILZADEH R, NAKAGAWA M, JONES A. TDD-CDMA for the 4th generation of wireless communications[J]. IEEE Wireless Communications, 2003, 10(4): 8-15.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部