期刊文献+

基于独立分量分析的混合信号盲分离技术 被引量:1

Blind Separation of Mixing Signals based on Independent Component Analysis
下载PDF
导出
摘要 针对信号接收端接收多路信号引起线性瞬时混叠的情形,提出基于独立分量分析的混合信号盲分离方法。首先,建立信号混合数学模型,并根据源信号之间的统计独立特性构建目标函数;其次,采用固定点算法优化目标函数,寻找极值点,得到信号分离矩阵;最后,利用分离矩阵和观测信号分离出各路源信号。仿真实验的结果表明,在多路通信信号和其他信号线性瞬时混合的情况下,提出的方法能够有效地分离出各个源信号。 For the problem of linear instantaneous mixing signal at the receiver, the mixing signal blind separation method based on independent component analysis is proposed. Firstly, a signal mixing mathematical model is established, and based on the statistical independence characteristics of the source signals, an objective function constructed. Then the fixed point algorithm is used to optimize the objective function, find the extreme points, and acquire the signal separation matrix. Finally, the source signals are separated by using the separation matrix and observation signals. The simulation experiments indicate that the proposed method can effectively separate the source signals when the multipath communication signals are mixed with other signals in a linear and instantaneous manner.
作者 王雁涛 吉磊 WANG Yan-tao;JI Lei(Military Representative Bureau of Naval Equipment Department in Chongqing Region, Chongqing 400042, China;No.30 Institute of CETC, Chengdu Sichuan 610041, China)
出处 《通信技术》 2018年第5期1041-1044,共4页 Communications Technology
关键词 独立分量分析 统计独立 信号分离 线性瞬时混合 independent-component analysis statistic independence signal separation linear instantaneous mixing
  • 相关文献

参考文献3

二级参考文献42

  • 1杨敏,党瑞荣,付岳峰.正弦波参数法测量介质损耗角[J].电气技术,2009,10(1):61-64. 被引量:1
  • 2汪宏年,陶宏根,王桂萍,张玲玲.双感应测井资料的快速近似迭代反演[J].地球物理学报,2007,50(5):1614-1622. 被引量:14
  • 3Comon P.Independent Component Analysis--A New Concept[J].Signal Processing,1994,36(3):287-314.
  • 4Hyvarinen A,Oja E.Independent Component Analysis:Algorithm and Applications[J].Neural Networks,2000,13(4):411-430.
  • 5Hyvarinen A.Survey on Independent Component Analysis[J].Neural Computing Surveys,1999,2(1):94-128.
  • 6Hyvarinen A,Oja E.A Fast Fixed-point Algorithm for Independent Component Analysis[J].Nerural Computation,1997,9(7):1483-1492.
  • 7GAO Yunpeng, TENG Zhaosheng, WANG Jingxun, WEN He. Dielectric loss factor measurement based on nuttall self-convolution window phase difference correction [C]//The Ninth International Conference on Electronic Measurement and Instruments. Chang- sha: IEEE Press, 2009, 1: 174-178.
  • 8Hu Xuejun, CHEN Jie, TAN Honghua. Application of FWT in dielectric loss angle for on-line measure- ment [C]//2010 International Conference on Electri- acl and Control Engineering. Wuhan: IEEE press, 2010: 3373-3376.
  • 9HYVARINEN A, OJA E. Independent component anal- ysis: algorithms and applications [J]. IEEE Transac- tions on Neural Network, 2000, 13: 411-430.
  • 10SHEN Hao, MARTIN K, KNUT H. Local convergence analysis of FastlCA and related algorithms [J]. IEEE Transactions on Neural Networks, 2008, 19(6): 1022- 1031.

共引文献17

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部