期刊文献+

基于用户命令序列的伪装入侵检测 被引量:6

Masquerade Intrusion Detection based on User Command Sequence
下载PDF
导出
摘要 伪装入侵是指攻击者冒充合法用户的身份并恶意使用该用户权限,这对信息系统安全构成了严重威胁。通过分析用户的行为,学习并构建正常用户的行为模式进行伪装检测,旨在识别异常行为并确定入侵者。在现有研究的基础上,设计了新的基于命令序列的多层感知器(MLP)和随机森林(Random Forest)伪装入侵检测模型。实验结果表明,提出的两种方法在检测精度和检测代价上皆取得了较好结果。 A masquerade attack refers to the attacker impersonating legal user's identity and malicious use of the user permissions, and this constitutes a serious threat to information system security. By analyzing user behaviors, learning and constructing a normal user's behavior pattern, the masquerader is detected, aiming to identify the abnormal behavior and lock the intruder. Based on the existing research, the novel command-sequence-based MLP (multilayer perceptron) and the random forest masquerading intrusion detection model are proposed and designed. The experimental results indicate that the proposed two methods could acquire fairly good results in terms of detection accuracy and cost.
作者 汤雨欢 施勇 薛质 TANG Yu-huan;SHI Yong;XUE Zhi(School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, Chin)
出处 《通信技术》 2018年第5期1148-1153,共6页 Communications Technology
基金 国家自然科学基金重点项目(No.61332010)~~
关键词 伪装入侵检测 用户行为建模 多层感知器 随机森林 分类算法 masquerade intrusion detection user-behavior modeling multilayer perceptron random forest classification algorithm
  • 相关文献

参考文献1

二级参考文献15

  • 1王永全.通信网络中犯罪行为的取证技术[J].电信科学,2006,22(6):63-66. 被引量:4
  • 2Anderson J P. Computer Security threat monitoring and surveillance[R]. Technology Report, James P Anderson Co., Fort Washington, Pennsylvanin, 1980.
  • 3Canndy J. Artificial neural network for misuse detection[J]. Proceeding of the 1998 National Information System Security Conference (NI-SSC' 98), 1998, (10): 5-8: 443-456.
  • 4Steven A H. An immunological model of distributed detectionand its application to computer security[D]. [s.l]: University of New Mexico, 1999.
  • 5Wenke Lee, Stolfo S J, Mok K W. A Data Mining Framework for Building Intrusion Detection Model[C]. Proceedings of the 1999 IEEE Symposium on Security and Privacy, 1999.
  • 6Pawlak Z. Vagueness and uneertainty-a rough set perspective [J]. Computational Intelligence, 1995, 11 (2): 227-232.
  • 7连一峰.入侵检测综述(一)[J].网络安全技术与应用,2003(1):46-48. 被引量:7
  • 8连一峰.入侵检测综述(二)[J].网络安全技术与应用,2003(2):43-45. 被引量:3
  • 9蔡忠闽,管晓宏,邵萍,彭勤科,孙国基.基于粗糙集理论的入侵检测新方法[J].计算机学报,2003,26(3):361-366. 被引量:57
  • 10连一峰.入侵检测综述(三)[J].网络安全技术与应用,2003(3):47-49. 被引量:5

共引文献21

同被引文献42

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部