期刊文献+

基于垂直镜面RCS减缩的周期结构弯曲性能探究及设计

Exploration and Design of Periodic Structure Bending Performance based on Vertical Mirror RCS Reduction
下载PDF
导出
摘要 超材料技术越来越多地应用于雷达散射截面(RCS)减缩领域,但简单均匀结构加载在曲面目标上会出现减缩性能不稳定的问题。因此,利用CST仿真软件对电磁波入射到弯曲面情况模拟仿真,初步总结了弯曲状态下正方形周期结构RCS的性能变化规律及其原因。由于它的谐振条件被破坏,场分布不均匀,导致弯曲状态下RCS性能恶化。于是,提出了一种方环均匀结构,在不引入复杂图形的基础上,可在弯曲状态下保持RCS减缩性能的稳定。结果表明,目标体弯曲度在0°~40°,方环均匀结构在11.7~15.4 GHz内可以保证RCS减缩性能的稳定。 The supermaterial technology is increasingly applied to RCS (Radar Cross Section) reduction field, and however the problem of unstable shrinkage performance would occur when a simple homogeneous structure is loaded on a curved target. For this reason, with the CST simulation software, the incidence of electromagnetic wave on the curved surface is simulated. The performance-change law of the square periodic structure RCS under bending condition and the cause are preliminarily summarized. Due to the destruction of resonance conditions, the inhomogeneous field distribution leads to deterioration of RCS performance under bending conditions. Thus, a uniform structure of the square ring is proposed, and the stability of the RCS reduction performance may be maintained in bending state without introducing a complicated pattern. The results indicate that when the curvature of the target body is between 0°- 40° and the uniform structure of the square ring between 11.7 - 15.4 GHz, the stability of RCS reduction can be guaranteed.
作者 王利云 张国瑞 周佩珩 WANG Li-yun;ZHANG Guo-rui;ZHOU Pei-heng(State Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Technology, University of Electronic Science and Technology of China, Chengdu Sichuan 610000, China)
出处 《通信技术》 2018年第5期1199-1204,共6页 Communications Technology
关键词 雷达散射截面(RCS)减缩 周期结构 弯曲状态 方环均匀结构 Radar Cross Section (RCS) reduction periodic structure bending state square ring uniform structure
  • 相关文献

参考文献7

二级参考文献61

  • 1刘英,龚书喜,郭晖,傅德民.用于天线RCS减缩的分形微带贴片天线[J].电子学报,2004,32(9):1530-1531. 被引量:7
  • 2荣丰梅,龚书喜,贺秀莲.利用开槽和短路探针加载减缩微带天线RCS[J].西安电子科技大学学报,2006,33(3):479-481. 被引量:17
  • 3Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402.
  • 4Hu T, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev, B 78 241103.
  • 5Marcus D, Thomas K, Soukoulis C M 2009 Phys. Rev. B 79 033101.
  • 6Luukkonen O, Filippo C, Agostino M, Sergei A T 2009 IEEE Trans. Antennas Propagat. 57 3119.
  • 7Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T 2010 Progress in Electromagnetics Research 10 231.
  • 8Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104.
  • 9Gu C, Qu S B, Pei Z B, Xu Z, Ma H, Lin B Q, Bai P, Peng W D 2011 Acta Phys. Sin. 60 107801.
  • 10Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R 2011 Opt. Left. 36 945.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部