期刊文献+

基于局部特征尺度分解与最小熵解卷积的轴承故障诊断 被引量:6

Fault Diagnosis for Bearings Based on LCD-MED
下载PDF
导出
摘要 为准确进行滚动轴承的故障诊断,结合局部特征尺度分解(LCD)和最小熵解卷积(MED)给出了一种新的故障诊断方法。首先,对轴承振动信号进行局部特征尺度分解,得到若干个内禀尺度分量;然后,依据互相关系数指标,采用聚类分析方法自动选取有用分量并叠加作为重构信号;最后,应用最小熵解卷积将重构信号降噪,并应用包络分析技术进行故障诊断。通过轴承内、外圈故障振动数据的分析表明:经LCD-MED处理后,振动信号的峭度值得到了较大提高,故障特征频率更加突出,基于LCD-MED的方法在轴承故障诊断中有效且合理。 A new fault diagnosis method is proposed based on local characteristic-scale decomposition( LCD) and minimum entropy deconvolution( MED) to accurately diagnose of fault of rolling bearings. Firstly,the vibration signal of bearings is decomposed into some intrinsic mode components( ISCs) by LCD. Secondly,according to cross correlation coefficient index,the useful component is selected automatically and superposed as reconstructed signal by using cluster analysis method. Then the reconstructed signal is denoised by MED,and the fault is diagnosed by envelope analysis technology. The analysis of fault vibration data of inner and outer rings of the bearings shows that the kurtosis of vibration signal is improved greatly and the frequency of fault features is highlighted after LCD-MED treatment. The method based on LCD-MED is effective and reasonable in fault diagnosis of the bearings.
作者 崔伟成 张征 CUI Weicheng;ZHANG Zheng(Naval Aeronautical University, Yantai 264001, China;Ludong University, Yantai 264025 , China)
出处 《轴承》 北大核心 2018年第5期51-55,共5页 Bearing
基金 国家部委预研基金项目(9140A27020214JB1446)
关键词 滚动轴承 故障诊断 局部特征尺度分解 聚类分析 最小熵解卷积 rolling bearing fault diagnosis local characteristic - scale decomposition cluster analysis minimum entropy deconvolution
  • 相关文献

参考文献7

二级参考文献75

  • 1程军圣,于德介,杨宇.经典模态分解方法中内禀模态函数判据问题研究[J].中国机械工程,2004,15(20):1861-1864. 被引量:12
  • 2李辉,郑海起,唐力伟.基于EMD和包络谱分析的轴承故障诊断研究[J].河北工业大学学报,2005,34(1):11-15. 被引量:16
  • 3徐冠雷,王孝通,徐晓刚,秦绪佳,朱涛.多分量到单分量可用EMD分解的条件及判据[J].自然科学进展,2006,16(10):1356-1360. 被引量:26
  • 4张健.机械故障诊断技术[M].北京:机械工业出版社,2008.
  • 5Huang N E,Zheng Shen,Long S R,et al.Theempirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time seriesanalysis[A].Proc.Roy.Soc[C].London,1998,454:903-995.
  • 6Huang N E,Wu Z.A review on Hilbert-Huangtransform:method and its applications to geophysicalstudies[J].Adv.Adapt.Data Anal.,2009,1:1-23.
  • 7Huang N E,Shen Z,Long R S.A new view ofnonlinear water waves-the Hilbert spectrum[J],Ann.Rev.Fluid Mech.,1999,31:417-457.
  • 8Khaldi K,Boudraa A O,Bouchikhi A,et al.Speechsignal noise vdmction by EMD[A].IEEEInternational Symposium on Communications,Controland SignalProcessing ISCCSP 2008,St.Julians,Malta,2008:1 155-1 158.
  • 9Dejie Yu,Junsheng Cheng,Yu Yang.Application ofEMD method and Hilbert spectrum to the faultdiagnosis of roller bearings[J].Mechanical Systemsand Signal Processing,2005,19:259-270.
  • 10Guanghong Gai.The processing of rotor startupsignals based on empirical mode decomposition[J].Mechanical Systems and Signal Processing,2006,20:225-235.

共引文献337

同被引文献56

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部