摘要
本文研究了麦比乌斯梯子C(2n,n)的强边染色问题.利用组合分析的方法,得到了如下结果:当n=3时,χ'_s(C(2n,n))=9;当n=4时,χ'_s(C(2n,n))=10;当n=5,8时,χ'_s(C(2n,n))=8;当n 3且n≡2(mod 4)时,χ'_s(C(2n,n))=6;当n 7且n≡0,1或3(mod 4)时,χ'_s(C(2n,n))=7.
In this paper, we study the problem of the strong edge-coloring of Mbius ladder C(2n, n). By using the combinatorial method, we obtain the following results: χ's(C(2n, n)) = 9 if n = 3; χ's(C(2n, n)) = 10 if n = 4; χ's(C(2 n, n)) = 8 if n = 5, 8; χ's(C(2n, n)) = 6 if n 3 and n ≡ 2(mod 4); χ's(C(2n, n)) = 7 if n 7 and n ≡ 0, 1 or 3(mod 4).
作者
姚顺禹
马登举
YAO Shun-yu;MA Deng-ju(School of Sciences,Nantong Nniversity,Nantong 226019,China)
出处
《数学杂志》
2018年第3期497-501,共5页
Journal of Mathematics
基金
国家自然科学基金资助项目(11171114)
关键词
强边染色
强边色数
麦比乌斯梯子
strong edge-colouring
strong chromatic index
MSbius ladder