期刊文献+

具有收获和阶段结构的比率依赖的捕食系统 被引量:3

A ratio-dependent predator system with a stage structure and harvesting
下载PDF
导出
摘要 研究了具有收获和时滞,且捕食者具有阶段结构的比率依赖的捕食系统.以时滞τ为分支参数,运用Hopf分支理论,在一定条件下,得到当时滞τ<τ_0时正平衡点是局部渐近稳定的,当时滞τ<τ_0时正平衡点是不稳定的,即当τ经过临界值τ_0时系统出现Hopf分支.用Matlab软件进行数值仿真验证了结论的正确性. A ratio-dependent predator system with a stage structure for the predator, time delay and harvesting was investigated. By means of the Hopf bifurcation theorem and consideration of the delay r as a bifurcation parameter, the endemic equilibrium was locally stable when ττ0, and unstable when ττ0,which meant Hopf bifurcation occurred when r passed through the critical values τ0. Matlab was employed to carry out numerical simulation to verify our results.
作者 章培军 李维德 王震 杨友社 Zhang Pei-jun1, Li Wei-de2, Wang Zhen1, Yang You-she1(1. Intelligent Control Technology Research and Development Center, School of Science, Xijing University, Xi'an 710123, China ;2. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, Chin)
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期279-284,共6页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(11726624 61473237) 陕西省自然科学基础研究计划项目(2016JM1024) 陕西省教育厅科研计划项目(15JK2181)
关键词 阶段结构 比率依赖 收获 捕食-食饵模型 stage structure ratio-dependent harvesting predator-prey model
  • 相关文献

参考文献1

二级参考文献10

  • 1SHULGIN B, STONE L, AGUR Z. Pulse vaccination strategy in the SIR epidemic model[J]. Bull Math Biol, 1998, 60(6): 1 123-1 148.
  • 2ZHAO Zhong, CHEN Lan-sun, SONG Xin-yu. Im- pulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate[J]. Math- ematics and Computers in Simulation, 2008, 79(3): 500-510.
  • 3DONOFRIO A. On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J]. Appl Math Lett, 2005, 18(7): 729-732.
  • 4RAMSAY M, GAY N, MILLER E. The epidemiology of measles in England and Wales: rationale for the 1994 national vaccination campaignlJ]. Commun Dis Rep CDR Rev, 1994, 4(12): 141-146.
  • 5MENG Xin-zhu, CHEN Lan-sun, CHENG Hui-dong. Two profitless delays for the SEIRS epidemic dis- ease model with nonlinear incidence and pulse vac- cination[J]. Applied Mathematics and Compulation, 2007, 186(1): 516-529.
  • 6ZHANG Tai-lei, TENG Zhi-dong. Pulse vaccination delayed SEIRS epidemic model with saturation in- cidence[J]. Applied Mathematical Modelling, 2008, 32(7): 1 403-1416.
  • 7WEI Chun-jin, CnEN Lamsun. A delayed epidemic model with pulse vaccination[J]. Discrete Dynamics in Nature and Society, 2008, 2008: 1-12.
  • 8GAO Shu-jing, CHEN Lan-sun, NIETO J, et al. Anal- ysis of a delayed epidemic model with pulse vacci- nation and saturation incidence[J]. Vaccine, 2006, 24(35/36): 6 037-6 045.
  • 9GAO Shu-jing, CHEN Lan-sun, TENG Zhi-dong. Pulse vaccination of an SEIR epidemic model with time delay[J]. Nonlinear Analysis: Real World Ap- plication, 2008, 9(2): 599-607.
  • 10KUANG Y. Delay differential equation with appli- cation in population dynamics[M]. New York: Aca- demic Press, 1993: 67-70.

共引文献4

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部