摘要
Interfacial transition zones (ITZs) between aggregates and mortar are the weakest parts in concrete. The random aggregate generation and packing algorithm was utilized to create a two-phase concrete model, and the zero-thickness cohesive elements with different normal distribution parameters were used to model the ITZs with random mechanical properties. A number of uniaxial tension-induced fracture simulations were carried out, and the effects of the random parameters on the fracture behavior of concrete were statistically analyzed. The results show that, different from the dissipated fracture energy, the peak load of concrete does not always obey a normal distribution, when the elastic stiffness, tensile strength, or fracture energy of ITZs is normally distributed. The tensile strength of the ITZs has a significant effect on the fracture behavior of concrete, and its large standard deviation leads to obvious diversity of the fracture path in both location and shape.
Interfacial transition zones (ITZs) between aggregates and mortar are the weakest parts in concrete. The random aggregate generation and packing algorithm was utilized to create a two-phase concrete model, and the zero-thickness cohesive elements with different normal distribution parameters were used to model the ITZs with random mechanical properties. A number of uniaxial tension-induced fracture simulations were carried out, and the effects of the random parameters on the fracture behavior of concrete were statistically analyzed. The results show that, different from the dissipated fracture energy, the peak load of concrete does not always obey a normal distribution, when the elastic stiffness, tensile strength, or fracture energy of ITZs is normally distributed. The tensile strength of the ITZs has a significant effect on the fracture behavior of concrete, and its large standard deviation leads to obvious diversity of the fracture path in both location and shape.
基金
supported by the National Basic Research Program of China (973 Program:2011CB013800)