期刊文献+

基于正则化回归的变量选择方法在高维数据中的应用 被引量:4

Application of variable selection method based on regularized regression to high dimensional data
原文传递
导出
摘要 变量筛选和模型估计一直是高维数据的研究热点,而高维数据的维度灾难问题日渐突出,传统的统计分析方法因模型不稳定不再适用,本文对高维数据中基于正则化回归的变量选择方法的原理、适用的数据类型及优缺点、调整参数的选择进行综述。 Variable filtering and model estimation have been the hotspot of high dimensional data,and the dimensionality problem of high dimensional data is becoming more and more prominent. The traditional statistical analysis method is no longer applicable due to the instability of the model. In this paper,we review the principle of variable selection method based on regularized regression in high dimensional data,the data type and the advantages and disadvantages,and the selection of adjustment parameters.
作者 荣雯雯 张奇 刘艳 RONG Wen-wen, ZHANG Qi, LIU Yan(Department of Health Statistics, Harbin Medical University, Harbin, Heilongjiang 150081, Chin)
出处 《实用预防医学》 CAS 2018年第6期645-648,共4页 Practical Preventive Medicine
基金 国家自然基金(81172741 30972537)
关键词 高维数据 正则化 惩罚项 调整参数 high dimensional data regularization penalty item adjustment parameter
  • 相关文献

参考文献6

二级参考文献38

  • 1李凯,黄厚宽.一种基于聚类技术的选择性神经网络集成方法[J].计算机研究与发展,2005,42(4):594-598. 被引量:24
  • 2曾广基.澳大利亚医疗质量管理体系[J].现代医院,2005,5(10):1-4. 被引量:18
  • 3周志华,王钰.机器学习及其应用[M].北京:清华大学出版社,2006.
  • 4Zhou Z-H, Wu J, Tang W. Ensembling neural networks: many could be better than all [J]. Artificial Intelligence, 2002, 137(1-2): 239-263.
  • 5Goldberg D E. Genetic Algorithms in Search Optimization and Machine Learning[J]. Addison wesley, 1989.
  • 6Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. [C]//In: Wermter S, Riloff E, Scheler G, eds. Proc. 14th Joint Int. Conf. Ar- tificial Intelligence. San Mateo, CA: Morgan Kaufmann, 1995, 1137-1145.
  • 7Baker P. Data divination: big data strategies[M]. Cengage Learning PTR, 2015:25 - 55.
  • 8Breirnan L. Random forests[J]. Machine Learning, 2001, 45(1) :5 - 32.
  • 9Gondro C, van der Weft J, Hayes B. Genome - wide association stud- ies and genomic prediction[M]. Springer,2013:33 - 45.
  • 10McCallum QE, Weston S. Parallel R[M]. O'Reilly,2011:18- 26.

共引文献188

同被引文献40

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部