期刊文献+

城市安全监控视频图像目标自动跟踪仿真 被引量:3

Automatic Target Tracking Simulation of Video Surveillance Image in Urban Security Monitoring
下载PDF
导出
摘要 对城市监控视频图像的目标跟踪,能够有效提高城市安全监控处理效率。对视频图像的目标进行跟踪,需要将采集到的视频监控每帧图像进行差分运算,计算出图像中包含的连通域的几何特征,完成视频图像的目标跟踪。传统方法定义摄像机视域,对时间与空间关系进行约束,但忽略了计算出图像连通域的几何特征,导致跟踪精度偏低。提出基于层次递归的城市安全监控视频图像目标自动跟踪方法。对视频监控图像进行预处理,将采集到的视频监控序列中的每帧图像进行差分运算,获得合理的灰度图像,给出监控图像背景缓慢亮度变化的鲁棒性,计算出视频监控二值图像中包含的连通域的几何特征和其数目,利用模糊信息推理机制给出图像目标自动跟踪最优策略,由此实现城市安全监控视频图像目标自动跟踪。实验结果证明,所提方法跟踪精度较高,为维护社会治安提供了可行的依据。 An automatic target tracking method for urban security monitoring video image based on hierarchical reeursion is proposed. After preproeessing monitoring image, we perform differential calculation on each frame of video in the collected video image monitoring sequence to obtain reasonable gray images. When the robustness of slow brightness variations in monitoring image background is given, we calculate geometric features and amount of connected domain contained in binary image of monitoring video. Finally, we use fuzzy information reasoning mechanism to give the optimal strategy of automatic target tracking of image. Thus, the automatic target tracking of monitoring video image of urban security is realized. Simulation results show that the proposed method has high tracking accuracy. It provides a feasible basis for maintaining social security.
作者 杨叶梅 YANG Ye-mei(Concord University College FuJian Normal University, FuJian FuZhou 350000, Chin)
出处 《计算机仿真》 北大核心 2018年第5期326-329,共4页 Computer Simulation
基金 福建省教育厅:智慧生活小区智能化管理研究(JAT170866)
关键词 城市监控 视频图像 目标跟踪 Urban monitoring Video image Target tracking
  • 相关文献

参考文献10

二级参考文献120

  • 1Sun Jiping,Li Chenxin.In-pit coal mine personnel uniqueness detection technology based on personnel positioning and face recognition[J].International Journal of Mining Science and Technology,2013,23(3):357-361. 被引量:11
  • 2杨晓峰,张桂林.一种基于仿射变换模型的目标跟踪算法[J].计算机与数字工程,2005,33(12):30-34. 被引量:7
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 4刘宝生,闫莉萍,周东华.基于最小最大圆度量的鲁棒模板匹配方法[J].红外与激光工程,2006,35(5):618-623. 被引量:5
  • 5LakshmiDevasena C, Revathi R. Video surveillance systems-a survey [J]. International Journal of Computer Science Issues, 2011, 8 (4).. 635-642.
  • 6Cristani M, Raghavendra R, Del Bue A. Human behavior anal- ysis in video surveillance: A social signal processing perspective [J]. Neurocomputing, 2013, 100 (1) .. 86-97.
  • 7Krahnstoever N, Yu T, Patwardhan K A, et al. Multi-camera person tracking in crowded environments [C] //Proc Twelfth IEEE lnt Performance Evaluation of Tracking and Surveillance Workshop, 2009: 1-7.
  • 8Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction [C] //Proceedings of the 17th Interna- tional Conference on Pattern Recognition. 2004, 22 ( 2 ) .. 28-31.
  • 9Davis J, Sharma V. Background-subtraction using contour- based fusion of thermal and visible imagery [J]. Computer Vi- sion and Image Understanding, 2007, 106, 162-182.
  • 10Bresson X, Esedoglu S, Vandergheynst P, et al. Fast global minimization of the active contour/snake model [J]. Journal of Mathematical Imaging and Vision, 2007, 28 (2): 151-167.

共引文献75

同被引文献26

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部