期刊文献+

基于新二重积分不等式T-S模糊系统稳定性分析

Stability Analysis for T-S Fuzzy Systems with Time Delays Via New Double Integral Inequality
下载PDF
导出
摘要 针对时滞T-S模糊系统时滞相关稳定性问题,本文在文献[9]的基础上进行改进,结合模糊线积分Lyapunov泛函方法和更为先进的一重积分不等式与新型双重积分不等式,得到了保守性更低的非线性时滞系统时滞相关稳定性条件。构建合适Lyapunov-Krasovskii泛函,运用两种积分不等式技术对泛函导数进行处理,所得到的判定准则一方面能获得更大的时滞上界,降低了保守性;另外,相比完全Lyapunov泛函、时滞分割等方法减少了决策变量,为检验本文结果的有效性和优越性,通过2个数值例子进行验证。验证结果表明,比现有成果所得到的稳定性准则面能获得更大的时滞上界,减少了决策变量,而且降低了保守性和复杂度。该研究对时滞T-S模糊系统稳定性分析方法具有重要意义。 This paper is concerned with the problem of the delay-dependent stability analysis for T-S fuzzy systems with time delays.It improves the result of[9],by combining the fuzzy linear integral Lyapunov functional method with more advanced integral inequality and the new double integral inequality,animproved sufficient criterion for the delay-dependent stability analysis for T-S fuzzy systems with time delays is presented.By constructing the appropriate Lyapunov-Krasovskii functional,and the two kinds of integral inequality techniques are used to deal with the functional derivative,the obtained criterion can produce better admissible upper bounds and reduce the conservation.Compared with the complete Lyapunov functional and the delay partitioning method,it can reduce decision variables.In order to test the validity and superiority of the results in this paper,two numerical examples are used to verify the validity of the proposed method.The results show that compared with the stability criteria obtained from the existing results,our method can obtain a larger upper bound of delay,and reduce the decision variables、conservativeness and complexity.This research is of great significance for the stability analysis of time-delay T-S fuzzy systems.
作者 赵鑫 林崇 刘焕霞 ZHAO Xin;LIN Chong;LIU Huanxia(Institute of Complexity Science,Qingdao University,Qingdao 2GG071,China)
出处 《青岛大学学报(工程技术版)》 CAS 2018年第2期7-11,31,共6页 Journal of Qingdao University(Engineering & Technology Edition)
基金 国家自然科学基金资助项目(61673227)
关键词 时滞T-S模糊系统 模糊线积分Lyapunov泛函 积分不等式 稳定性分析 T-S fuzzy systems with time delays the fuzzy line integral Lyapunov function integral inequality stability analysis
  • 相关文献

参考文献2

二级参考文献75

  • 1廖小昕.动力系统的稳定性理论和应用[M].北京:国防工业出版社,2000.15-30.
  • 2刘和涛.一类时滞微分系统无条件稳定的代数判定.控制理论与应用,1986,1:106-110.
  • 3张作元.滞后型方程x(t)=Ax(f)+Bx(t-r)全时滞稳定的代数判据.数学通报,1986,31(23):1768-1771.
  • 4Repin Y M. Quadratic Lyapunov functionals for systems with delay [J]. Prikladnaya Matematikal Mehanika, 1965, 24(3): 564-566.
  • 5Brierley S D, Lee E B. Solution of the equation A(z)X (z)+X(z)B(z)=C(z) and its application to the stability of generalized linear systems [J]. Int J of Control, 1984, 40(6): 1065-1075.
  • 6Lee E B, Lu W S, Wu N E. A Lyapunov theory for linear time-delay systems [J]. IEEE Trans on Automatic Control, 1986, 31(8): 259-261.
  • 7Agathoklis P, Foda S. Stability and the matrix Lyapunov equation for delay differential systems[J]. Int J of Control, 1989, 49(2):417-432.
  • 8Lefschitz. Stabilty of nonlinear control systems[M]. New York: Academic Press, 1965.
  • 9Razumikin B S. On the stability of systems with delay [J]. Prikladnava Matematikal Mekhanika, 1956, 20 (4) : 500-512.
  • 10Trinh H, Aldeen M. On robustness and stabilization of linear systems with delayed nonlinear perturbations[J]. IEEE Trans on Automatic Control, 1997, 42 (7): 1005-1007.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部