期刊文献+

基于置信特征与结构相似度约束的图像修复算法 被引量:4

Image Inpainting Algorithm Based on Confidence Feature Coupling Structure Similarity Constraint
下载PDF
导出
摘要 当前图像修复算法主要通过对像素值的差异进行度量来完成图像修复,当待修复图像中破损区域较大时,该方法修复的图像中会出现较为明显的块效应以及纹理不连续效应,导致算法的修复效果不佳.对此,本文提出了基于置信特征耦合结构相似度约束的图像修复算法.引入优先权函数,对破损区域中待修复像素的优先权值进行计算,以确定待修复像素.利用待修复像素的梯度模值来构造梯度变化约束机制,对修复块的模板大小进行调整,以提高图像的修复质量.通过像素点的置信度构造置信特征因子,并利用置信特征因子建立了搜索空间适配法则,明确了最优匹配块的搜索范围.引入结构相似度模型,对修复块与匹配块之间的结构相似度进行约束,以选取最优匹配块,利用最优匹配块对修复块进行扩散填充,从而完成图像的修复.仿真实验表明:与当前图像修复技术相比,本文方法具有更好的图像复原质量,有效降低了块效应以及不连续效应. At present, the image inpainting algorithm mainly completes the image restoration by measuring the difference of the pixel values, when the damaged region in the image to be repaired is larger, there will be obvious block effect and discontinuous texture effect in the restored image, which will lead to a poor repair effect. An research of image inpainting algorithm based on confidence feature coupling structure similarity constraint was proposed in this paper. The priority function is introduced to calculate the priority weights of the pixels to be repaired in the damaged area to determine the pixels to be repaired. A gradient constrained model is constructed by using the gradient modulus of the repaired pixels, and the template size of the repaired blocks is adaptively adjusted to improve the inpainting quality. The confidence feature factor is constructed by the confidence of the pixels, and the search space adaptation rule is established by using the confidence feature factor. The search range of the optimal matching block is defined. The introduction of structural similarity index measurement system model, to measure the repair block and matching the structural similarity between the blocks, to select the optimal matching block by block matching to repair block diffusion filling, thus completing the image restoration. Simulation results show that the proposed method does not have block effect and discontinuity, and has better visual effects.
作者 卫星 周瑜龙 焦蓬蓬 郭依正 刘清 WEI Xing1, ZHOU Yulong1, JIAO Pengpeng1, GUO Yizheng1, LIU Qing2(1. Taizhou College, Nanjing Normal University, Taizhou, Jiangsu, 225300, China; 2. College of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu, 210097, Chin)
出处 《新疆大学学报(自然科学版)》 CAS 2018年第2期203-208,共6页 Journal of Xinjiang University(Natural Science Edition)
基金 江苏省高校自然科学基金(15KJB170006)
关键词 图像修复 优先权函数 梯度变化约束 置信特征因子 搜索空间适配法则 结构相似度模型 image inpainting priority function gradient constrained model confidence characteristic factor search space adaptation rule structural similarity index measurement system model
  • 相关文献

参考文献12

二级参考文献155

  • 1谢国波,丁煜明.基于Logistic映射的可变置乱参数的图像加密算法[J].微电子学与计算机,2015,32(4):111-115. 被引量:17
  • 2周廷方,汤锋,王进,王章野,彭群生.基于径向基函数的图像修复技术[J].中国图象图形学报(A辑),2004,9(10):1190-1196. 被引量:23
  • 3宋玲,马军,连莉,张志军.文档相似度综合计算研究[J].计算机工程与应用,2006,42(30):160-163. 被引量:41
  • 4吴亚东,张红英,吴斌.数字图像修复技术[M].北京:科学出版社,2010.
  • 5Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting[A]. Proceedings of ACM SIGGRAPH [ C ]. New Orleans: ACM Press, 2000.417 - 424.
  • 6Chan T, Shen J. Mathematical models for local nontexture in-paintings[ J]. SIAM Journal on Applied Mathematics, 2001,62 (3) : 1019 - 1043.
  • 7Criminisi A, Perez P, Toyama K. Region filling and object re- moval by exemplar-based image inpainting[J]. IEEE. Transac- tions on Image Processing,2004, 13(9):1200- 1212.
  • 8Wong A, J Orchard. A nonlocal-means approach to exemplar- based inpainting[ A ]. 1EEE International Conference on Image Processing[ C ]. San Diego, CA, USA: IEEE, Press, 2008. 2600 - 2603.
  • 9Bugeau A, Bertalrnio M, Caselles V, et al. A comprehensive framework for image inpainting[ J]. IEEE Transactions on Im- age Processing, 2010,19(10) : 2634 - 2645.
  • 10Wu J Y, Ruan Q Q, An G H. Exemplar-based image comple- tion model employing PDE corrections [ J ]. Informafica, 2010, 21(2) :259 - 276.

共引文献113

同被引文献19

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部