期刊文献+

基于近似l_0范数的稀疏信号重构 被引量:7

A Sparse Signal Reconstruction Algorithm Based on Approximate l_0 Norm
下载PDF
导出
摘要 信号重构算法是压缩感知的关键.基于近似l_0范数的信号重构选取一个连续函数近似估计l_0范数,从而将l_0范数最小化问题转化为平滑函数的优化问题.该算法的关键在于选择合适的平滑函数和优化算法.为了提高压缩感知中稀疏信号恢复的精度,在之前工作的基础上,提出用一个简单的分式函数的和来近似估计l_0范数.然后通过牛顿迭代算法求解该函数的无约束优化问题的稀疏解,整合了似零范数算法快速收敛和牛顿迭代法精度高的优点.这样就可以在较少的时间内平滑且有效地近似l_0范数的最小化问题.仿真实验测试了所提算法在不同的压缩比、稀疏度及噪声水平情况下的性能,并与现有的同类算法进行了比较.结果表明:所提算法比现有的同类算法性能更好,重建信号的精度有了较大的提升,这有效地提高了在同等条件下压缩感知信号的恢复质量. The signal reconstruction algorithm is the key to compressed sensing.Signal reconstruction based on approximate l_0 norm chooses a continuous function to estimate l_0 norm,thus the minimization problem of l_0 norm is transformed into an optimization problem of a smooth function.It is critical for the signal reconstruction algorithm to select the appropriate smooth function and optimization algorithm.To improve the accuracy of the sparse signal recovered in the compression sense,the sum of a simple fractional function is proposed to approximate l_0 norm on the basis of previous work in the paper.Then the sparse solution of an unconstrained optimization problem of the function is solved by Newton iterative algorithm,which effectively integrated the advantages of the fast convergence of approximate l_0 norm algorithm and the high precision of Newton iteration algorithm.Thus,the minimization of l_0 norm is approximated smoothly and efficiently within less time.The performance of the proposed algorithm is tested and compared with some existing similar algorithms in the case of different compression ratio,sparseness and noise levels in the simulation experiments.Simulation results show that the performance of the proposed algorithm is better than the existing similar algorithms,and the precision of reconstructed signal is greatly improved,which improves the signal recovery quality in compressed sensing effectively under the same conditions.
作者 聂栋栋 弓耀玲 Nie Dongdong;Gong Yaoling(College of Science , Yanshan University , Qinhuangdao, Hebei 06600)
机构地区 燕山大学理学院
出处 《计算机研究与发展》 EI CSCD 北大核心 2018年第5期1090-1096,共7页 Journal of Computer Research and Development
基金 燕山大学基础研究专项课题(理工A类)(15LGA016)~~
关键词 压缩感知 信号恢复 l0范数 连续函数 牛顿迭代 compressed sensing signal reconstruction l0 norm continuous function Newton iteration
  • 相关文献

参考文献8

二级参考文献128

  • 1Candès E J,Wakin M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21 30
  • 2Baraniuk R G.Compressive sensing[J].IEEE SignalProcessing Magazine,2007,24(4):118 121
  • 3Candès E J,Romberg J K,Tao T.Stable signal recoveryfrom incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207 1223
  • 4Blumensath T,Davies M E.Gradient pursuits[J].IEEETransactions on Signal Processing,2008,56(6):2370 2382
  • 5Dai W,Milenkovic O.Subspace pursuit for compressivesensing signal reconstruction[J].IEEE Transactions onInformation Theory,2009,55(5):2230 2249
  • 6Mallat S G,Zhang Z F.Matching pursuits withtime-frequency dictionaries[J].IEEE Transactions on SignalProcessing,1993,41(12):3397 3415
  • 7Tropp J A,Gilbert A C.Signal recovery from randommeasurements via orthogonal matching pursuit[J].IEEETransactions on Information Theory,2007,53(12):46554666
  • 8Needell D,Vershynin R.Uniform uncertainty principle andsignal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,9(3):317 334
  • 9Figueiredo M A T,Nowak R D,Wright S J.Gradientprojection for sparse reconstruction:application to compressedsensing and other inverse problems[J].IEEE Journal ofSelected Topics in Signal Processing,2007,1(4):586 597
  • 10Chen S S,Donoho D L,Saunders M A.Atomicdecomposition by basis pursuit[J].SIAM Journal of ScientificComputing,1998,20(1):33 61

共引文献84

同被引文献63

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部