期刊文献+

基于Good-Turing平滑SO-PMI算法构建微博情感词典方法的研究 被引量:5

Research on the Construction of Micro-blog Sentiment Lexicon Based on Good-Turing Smoothing SO-PMI Algorithm
下载PDF
导出
摘要 微博情感词典的构建在微博情感分析中具有重要的研究意义和使用价值。针对现有公共情感词典对微博中情感词覆盖率较低的问题,以HowNet和大连理工大学情感本体作为微博基础情感词典,提出一种基于Good-Turing平滑的SO-PMI算法,针对近年来出现的大量网络情感词汇进行情感倾向性的判断,并与基础情感词典融合构建微博领域情感词典。最后采用基于规则的方法判断微博文本的情感倾向性。实验结果验证上述方法构建的微博领域情感词典在微博情感分类中的有效性和准确性。 Construction of micro-blog sentiment lexicon has important research significance and use value. In view of the problem that the existing sentiment lexicon has a low coverage rate of the sentiment words in micro-blog, puts forward an SO-PMI algorithm based on Good-Turing smoothing to extend micro-blog sentiment lexicon on the basis of How Net and Dalian University of Technology Emotional Ontology, then uses rule-based method to judge the emotional tendency of experimental data. Experimental results showed that the method has good effectiveness and accuracy of sentiment classification.
作者 姜伶伶 何中市 张航 JIANG Ling-ling;HE Zhong-shi;ZHANG Hang(College of Computer Science,Chongqing University,Chongqing 40004)
出处 《现代计算机》 2018年第7期15-20,共6页 Modern Computer
关键词 中文微博 情感词典 情感分类 Good-Turing SO-PMI 平滑 Chinese Micro-Blog Sentiment Lexicon Sentiment Classification Good-Turing SO-PMI Smoothing
  • 相关文献

参考文献5

二级参考文献50

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2董振东 董强.知网简介[EB/OL].http://www.keenage.com/.,1999.
  • 3刘群 李素建.基于《知网》的词汇语义相似度计算[A]..第三届汉语词汇语义学研讨会[c].台北,2002..
  • 4Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 5Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 6Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 7Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 8Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.
  • 9K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28.
  • 10Bing Liu, Minqing Hu, Junsheng Cheng. Opinion observer: analyzing and comparing opinions on the Web[A].WWW2005, 324- 351.

共引文献454

同被引文献54

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部