期刊文献+

基于改进MFCC的无人机监测方法 被引量:1

Drone monitoring based on improved MFCC
下载PDF
导出
摘要 针对基于光学与无线电的无人机反制设备普遍存在的工艺复杂、制造成本高昂、便携性低等问题。对基于声学的无人机反制方案进行研究。根据无人机螺旋桨的声信号对无人机进行监测,使用梅尔倒谱(MFCC)技术与隐马尔科夫模型(HMM)进行特征提取与分类识别,并针对无人机场景中难以确定和消除的环境噪声,引入掩蔽滤波理论,抑制噪声分量,突出无人机声信号。通过仿真分析验证了基于掩蔽滤波技术改进的MFCC方法具有更高的识别率,并且在低信噪比场景中具有更高的抗噪能力。 In order to solve those problems such as complex process,high manufacturing cost and low portability for Anti-UAV( Unmanned Aerial Vehicle) system which based on optical and radio. The Anti scheme based on acoustic signal is studied. Monitoring UAV according to the acoustic signal from the propeller. The MFCC( Mel-frequency cepstral coefficients) technique is used for feature extraction and HMM( Hidden Markov Mod) for classification. In view of the environmental noise that is difficult to determine and eliminate in the UAV scene,the masking filter theory is introduced to suppress the noise component and to highlight the UAV sound signal. Simulation analysis shows that the improved MFCC method based on masking filter technology has higher recognition rate and has higher noise immunity in low SNR scenarios.
作者 郭俊峰 张丽 GUO Junfeng;ZHANG Li(Chongqing Key Lab of Mobile Communications Technology,Chongqing University of Post and Communications, Chongqing 400065, Chin)
出处 《电声技术》 2018年第2期17-23,共7页 Audio Engineering
基金 长江学者和创新团队发展计划(IRT_16R72)
关键词 无人机 梅尔倒谱系数 声源识别 特征提取 隐马尔可夫 掩蔽滤波 Unmanned Aerial Vehicle Mel Frequency Cepstrum Coefficient Features Extraction Hidden Markov Model Masking Filtering
  • 相关文献

参考文献3

二级参考文献22

  • 1肖汉光,蔡从中,廖克俊.利用声波和地震波识别军事车辆类型[J].系统工程理论与实践,2006,26(4):108-113. 被引量:7
  • 2龚英姬,胡维平.基于HHT变换的病态嗓音特征提取及识别研究[J].计算机工程与应用,2007,43(34):217-219. 被引量:7
  • 3PHAM T,SROUR N. TTCP AG- 6: Acoustic detection and tracking of UAVs [ C ]// Proc. SPIE 5417. Orlando, FL: Ground, Ocean, and Air Sensor Technologies and Applica- tions VI ,2004.
  • 4DC flow protection & windshields [ EB/OL ]. ( 2010 - 09 - 21 )[2013 - 10 - 11 ]. http://www, toya. co. jp/file/pdf/ mft/ebook/ebook 15_windshields. pdf.
  • 5JAGANATHAN K,ELDAR Y C,HASSIBI B.STI~I" phase re- trieval : Uniqueness guarantees and recovery algorithms [ J ]. arXiv preprint arXiv: 1508.02820,2015.
  • 6SOM S ,PALIT S, DEY K,et al.A DWT-based digital water- marking scheme for image tamper detection, localization, and restoration[ M ] .Springer India:Applied Computation and Se- curity Systems,2015 : 17-37.
  • 7KELLER J M,GRAY M R,GIVENS J A.A fuzzy k-nearest neighbor algorithm[ J ] .Systems, Man and Cybernetics, IEEE Transactions on, 1985 (4) : 580-585.
  • 8DUARTE M F,HU Y H.Vehicle classification in distributed sensor networks [ J ]. Journal of Parallel and Distributed Computing,2004,64 (7) : 826- 838.
  • 9GHASEMZADEH H,JAFARI R.Physical movement monito- ring using body sensor networks: A phonological approach to construct spatial decision trees[ J] .Industrial hfformatics, IEEE Transactions on ,2011,7( 1 ) : 66-77.
  • 10WANG Z, JIANG M, HU Y, et al.An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors [ J 1-Information Technology in Bio- medicine,IEEE Transactions on,2012,16(4) : 691-699.

共引文献7

同被引文献14

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部