摘要
Using Cu-BTC prepared by hydrothermal method as precursor, carbon-based catalysts were obtained as model materials for low-temperature DeNO_x. These catalysts were characterized by X-ray diffractometry(XRD), Raman spectroscopy, scanning electron microscopy(SEM) and energy dispersive X-ray spectrometry(EDS). The results showed that all carbon-based catalysts held the octahedron shape of Cu-BTC in most parts, and they mainly consisted of face-centered cubic copper. CuO_x/C exhibited excellent catalytic activity, and such catalytic activity was further improved with the introduction of Ag. The catalyst with a Cu to Ag mole ratio of 6:1 and an activated temperature of 600 °C showed the best catalytic performance, and its catalytic denitration rate reached 100% at a temperature as low as 235 °C. During the catalytic reaction process, Cu~+ mainly played a catalytic role.
以Cu-BTC为前驱体,采用水热法制备碳基催化剂,并进行低温脱硝性能研究。通过X射线衍射(XRD)、拉曼光谱(Raman)、扫描电镜(SEM)和能量弥散X射线谱(EDS)等技术对碳基催化剂的结构进行表征。结果表明:碳基催化剂基本保持着Cu-BTC前驱体的八面体形貌,并主要呈现面心立方铜结构。通过碳基催化剂的脱硝性能研究发现:CuO_x/C表现出最佳的催化活性,且其活性随着Ag的掺入得到进一步的提高。当Cu/Ag摩尔比为6:1,活化温度为600°C时,碳基催化剂具有最优的催化活性,其脱硝效率达到100%时温度可降低至235°C。该催化反应过程中,主要是Cu^+起催化作用。
基金
Project(738010004)supported by the Project of Low Concentration Sulfur Dioxide Flue Gas Treatment,China
Project(2017GK4010)supported by the Scientific and Technological Breakthrough and Major Achievements Transformation of Strategic Emerging Industries of Hunan Province in 2017,China