期刊文献+

基于L_p稀疏正则的图像去模糊方法研究

Research on Blind Image Deblurring Based on L_p Regularization Method
下载PDF
导出
摘要 在图像去模糊问题中,图像的模糊核估计是重中之重.通常图像的梯度服从重尾分布这一先验被广泛的运用于图像的模糊核估计中,然而受限于非凸优化的数值求解方法,人们往往采用图像梯度的L1范数或者L2范数来近似,从而构造出计算较为简单的凸优化能量函数来估计模糊核.为此,本文提出一种基于Lp稀疏正则的非凸优化的模糊核估计方法,该方法以服从超拉普拉斯分布的图像梯度的Lp范数为稀疏先验项,有效的提高了先验知识的准确性的同时增强图像的强边缘,抑制了细小边缘对模糊核估计的影响.在对Lp范数的数值求解问题中,本文采用GISA(generalized iterated shrinkage algorithm)可以简单且有效的求得任意p值下的最优解.实验表明与传统方法相比,本文方法有效地提升图像的质量,去模糊后的图像更加清晰. Kernel estimation is the core problem of blind image deblurring. Usually, image gradient obeying heavy-tailed distribution as a priori knowledge is widely used in kernel estimation. Unfortunately, it is difficult solved as a non-convex optimization. Typically, the heavy-tailed distribution can be well modeled by a hyper-Laplacian distribution. In this paper, a kernel estimation method for Lp sparse regularization is proposed. Under the MAP framework, the Lp regularization of image gradient obeys the hyper-Laplacian distribution, which can improve the accuracy of kernel estimation. At the final non-convex optimization, the generalized iterated shrinkage algorithm is extended for Lp minimization with any p value. Compared with the traditional method, the new method can effectively improve the image quality, and the deblurred image is clearer.
作者 彭鸿 闫敬文 林哲 PENG Hong;YANJingwen;LIN Zhe(l.Department of Mechanical and Electrical Engineering,Shantou Polytechnic,Shantou 515073,Guangdong,China;College of Engineering,Shantou University,Shantou 515063,Guangdong,China;Department of Computer,Shantou Polytechnic,Shantou 515073,Guangdong,China)
出处 《汕头大学学报(自然科学版)》 2017年第2期58-65,共8页 Journal of Shantou University:Natural Science Edition
基金 汕头职业技术学院科研课题资助项目(SZK2016Y13 SZK2015Y20) 广东省自然科学基金资助项目(2015A030313654)
关键词 去模糊 LP范数 核估计 反卷积 点扩散函数 超拉普拉斯分布 image deblurring Lp norm kernel estimation deconvolution point spread function (PSF) hyper-Laplacian distribution
  • 相关文献

参考文献2

二级参考文献29

  • 1闫敬文,屈小波,陈嘉臻.分组Karhun-Loeve变换/整数小波变换高光谱影像准无损压缩新方法[J].光学学报,2007,27(10):1740-1744. 被引量:7
  • 2XU L,ZHENG S,JIA J Y.Unnatural 10 sparse representation for natural image deblurring[C].Computer Vision and Pattern Recognition (CVPR),2013 IEEE Conference on,2013:1107-1114.
  • 3XU Y.Single-Image blind deblurring for non-uniform camera-shake blur[C].Computer Vision-ACCV 2012,Springer Berlin Heidelberg,2013:336-348.
  • 4XU L,JIA J Y.Depth aware motion deblurring[C].2012 IEEE International Conference on Computational Photography (ICCP),2012:1-8.
  • 5CHO S.Registration based non-uniform motion deblurring[J].Computer Graphics Forum,2012,31(7):2183-2192.
  • 6LUCY L.An iterative technique for the rectification of observed distributions[J].Astronomical Journal,1974,76(6):745-754.
  • 7WIENER N.E.rtrapolation,Interpolation,and Smoothing of Stationary Time Series:with Engineering Applications[M].MIT press,1964.
  • 8KRISHNAN D,R FERGUS.Fast image deconvolution using hyper-Laplacian priors[J].Advances in Neural Information Processing Systems,2009,22:1-9.
  • 9FERGUS R.Removing camera shake from a single photograph[J].ACM Transactions on Graphics (TOG),2006,25(3):787-794.
  • 10XU L,JIA J Y.Two phase kernel estimation for robust motion deblurring[C].Computer WVisionECCV 2010,2010:157-170.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部