期刊文献+

基于神经网络算法的大数据分析方法研究 被引量:7

Study on the analysis method of data based on neural network algorithm
下载PDF
导出
摘要 随着深度互联网时代到来,大数据所蕴含的巨大科学、经济价值逐渐凸显。然而其数据分析方法却存在较高技术壁垒,想要发掘出大数据的价值空间,需要摒弃传统方案,采用新的分析方法。深度神经网络算法采用仿生学习算法整合庞大的异构数据,支持多源信息筛选,可实现时序动态捕捉,从而搭建起大数据转化为价值信息的桥梁。文中着重分析"大数据+神经网络"的深度学习算法在非结构化、模式多变的大数据群中的特征提取模式;并基于无限神经网络的前馈式连接方法,耦合时间参数进行更精确的特征提取与数据预测。最后对其在语音识别和图像分析中的应用进行实例测试,数据结果表明:无限神经网络在数据处理中具备更为强大的计算效率和性能优势。 With the advent of the depth of the Internet era,the great economic and scientific value of the big data is gradually highlighted. However,there are technical barriers to the data analysis methods of big data. In order to explore the value space of big data,we need to abandon the traditional program and develop new data analysis methods. The deep neural network algorithm uses bionic learning algorithm to integrate huge heterogeneous data,filters multi- source information,and realizes dynamic capture,which can perfect the bridge of transforming big data into value information. This paper focuses on the analysis of "big data + neural network" deep learning algorithm in unstructured model,changeable,characteristics of cross domain data in extraction mode,and feedforward neural network based on infinite connection method,coupling time parameter prediction feature extraction and more accurate data. The final test of its application in speech recognition and image analysis,the results show that the infinite neural network in data processing compared with the ordinary algorithm have more computational efficiency and powerful performance advantage.
作者 周林腾 ZHOU Lin-teng(Shandong University of Science and Technology,Qingdao 266590,Chin)
机构地区 山东科技大学
出处 《电子设计工程》 2018年第9期19-22,27,共5页 Electronic Design Engineering
关键词 大数据特性 神经网络算法 人工智能 前馈式神经网络 RTRL算法 data characteristics;neural network algorithm;artificial intelligence;neural network;RTRL algorithm
  • 相关文献

参考文献7

二级参考文献100

  • 1Zhan Jinyu Xiong Guangze.Optimal hardware/software co-synthesis for core-based SoC desi gns[J].Journal of Systems Engineering and Electronics,2006,17(2):402-409. 被引量:5
  • 2杨涛,肖俊,吴飞,庄越挺.基于分层曲线简化的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2006,18(11):1691-1697. 被引量:27
  • 3WOLF W,JERRAYA A A,MARTIN G Multiprocessor system-on-chip (MPSoC) technology[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2008,27(10):1701-1713.
  • 4JERRAYA A A,WOLF W.Multiprocessor systems on chips[M].San Francisco:Elsevier Morgan Kaufrnann,2005.
  • 5ARATO P,MANN Z,ORBAN A.Algorithmic aspects of hardware/software partitioning[J].ACM Transactions on Design Automation of Electronic Systems,2005,10(1):136-156.
  • 6ELES P,PENG Z,KUCHCINSKI K,et al.System level hardware/software partitioning based on simulated annealing and tabu search[J].Design Automation for Embedded Systems,1997,2(1):5-32.
  • 7ZHANG Y,LUO W,ZHANG Z,et al.A hardware/software partitioning algorithm based on artificial immune principles[J].Applied Soft Computing,2008,8(1):383-391.
  • 8GUO B,WANG D,SHEN Y,et al.Hardware-software partitioning of real-time operating systems using hopfield neural networks[J].Neurocomputing,2006,69(16-18):2379-2384.
  • 9JOHNSON J L,PADGETT M L,MICOM U S,et al.PCNN models and applications[J].IEEE Transactions on Neural Networks,1999,10(3):480-498.
  • 10CHANG Z,XIONG G Hardware/software partitioning of core-based systems using pulse coupled neural networks[C] //Advances in Neural Networks,ISNN 2007.[S.l.] :[s.n.] ,2007:1015-1023.

共引文献97

同被引文献94

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部