期刊文献+

完全多部图的符号罗马控制数 被引量:3

Signed Roman Domination of Multi-Partite Graph
下载PDF
导出
摘要 设图G=(V,E)是一个简单无向图,若实值函数f:V→{-1,1,2}满足以下两个条件:(i)对于任意v∈V,均有∑_(u∈N[v])f(u)≥1成立;(ii)任意v∈V,若f(v)=-1,则存在一个与v相邻的顶点u∈V,满足f(u)=2,则称该函数为图G的符号罗马控制函数.定义图的符号罗马控制数为γSR(G)=min{f(V)f是图G的符号罗马控制函数}.通过对完全多部图中的顶点数进行分类,给出了当k≥3时,完全多部图K(n_1,…,n_i,…,n_k)的符号罗马控制数的准确值. A signed Roman domination function, of a simple undirected graph G=(V,E)is a function f :V→{-1,1,2} satisfying the conditions that (i)∑u∈N[v]f(u)≥1 for any v∈V, and(ii)every vertex v for which f(v)=-1 is adjacent to a vertex u for which f(u)=2. The signed roman domination number of G is γSR(G)=min{f(V) f is the signed roman domination of G}. In this paper, we compute the exact values of the signed roman domination numbers of complete multi-partite graph when k=3, through classification the vertex of G.
作者 尹凯 陈学刚 YIN Kai;CHEN Xuegang(Institute of Mathematics and Physics, North China of Electric Power University, Beijing, 102200)
出处 《汕头大学学报(自然科学版)》 2017年第4期25-34,共10页 Journal of Shantou University:Natural Science Edition
基金 中央高校基本科研业务费专项资金资助(2016MS66)
关键词 完全多部图 符号罗马控制函数 符号罗马控制数 complete multi-partite graph signed roman domination function signed roman domination number
  • 相关文献

参考文献1

二级参考文献8

  • 1O. Favaron,H. Karami,R. Khoeilar,S.M. Sheikholeslami.On the Roman domination number of a graph[J]. Discrete Mathematics . 2008 (10)
  • 2Ernie J Cockayne,Paul A Dreyer,Sandra M Hedetniemi,Stephen T Hedetniemi.Roman domination in graphs[J]. Discrete Mathematics . 2003 (1)
  • 3Michael A. Henning,Stephen T. Hedetniemi.Defending the Roman Empire—A new strategy[J]. Discrete Mathematics . 2003 (1)
  • 4J. F. Fink,M. S. Jacobson,L. F. Kinch,J. Roberts.On graphs having domination number half their order[J]. Periodica Mathematica Hungarica . 1985 (4)
  • 5V.I.Arnautov.Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices. Prikl.Mat.I Programmirovanie . 1974
  • 6Morton Pader,Oral Hygiene Products and Practice.New York:Marcel Dekker. Inchiesta . 1998
  • 7Charles S. ReVelle,Kenneth E. Rosing.Defendens imperium romanum: A classical problem in military strategy. The American Mathematical Monthly . 2000
  • 8Erin W. Chambers,Bill Kinnersley,Noah Prince,Douglas B. West.Extremal problems for roman domination. SIAM Journal on Discrete Mathematics . 2009

同被引文献3

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部