期刊文献+

两个新的双曲平均及其Schur幂凸性 被引量:1

Two New Hyperbolic Averages and Their Schur Power Convexity
下载PDF
导出
摘要 定义了两个新的双曲函数及反双曲函数的复合平均,运用分析方法,研究了这两个平均的Schur幂凸性,给出了判定的充要条件. The complex average of two hyperbolic function and inverse hyperbolic function is defined. The Schur power convexity of those two mean is studied by using the analytical method.The necessary and sufficient conditions for the judgment are given.
作者 何灯 李云杰 HE Deng;LI Yunjie(Number 3 Middle School, Fuqing 350315, Fujian, China)
出处 《汕头大学学报(自然科学版)》 2017年第4期41-47,共7页 Journal of Shantou University:Natural Science Edition
关键词 SCHUR凸性 Schur幂凸性 双曲函数 反双曲函数 Schur convexity Schur power convexity hyperbolic function inverse hyperbolic function
  • 相关文献

参考文献6

二级参考文献33

  • 1张小明,续铁权.广义S-几何凸函数的定义及其应用一则[J].青岛职业技术学院学报,2005,18(4):60-62. 被引量:16
  • 2李大矛,石焕南.一个二元平均值不等式猜想的新证明[J].数学的实践与认识,2006,36(4):278-283. 被引量:5
  • 3李大矛,顾春,石焕南.Heron平均幂型推广的Schur凸性[J].数学的实践与认识,2006,36(9):386-390. 被引量:13
  • 4Albert W. Marshall, Ingrarn Olkin. Inequalities: Theory of Majorization andlts Applications[M]. New York: Academic Press, Inc, 1979.
  • 5Yuming Chu,Yupei Yi. The Schur Harmonic Convexity of the Hamy Symmetric Function and Its Applications[J]. Journal of Inequalities and Applications,Vol.2009(2009), Article ID 838529. http://www.hindawi.com/journals/jia.
  • 6Xiao-ming Zhang. Schur-geometric convexity of a function involving Maclaurin's elementary symmetric mean[J].Journal of Inequalities in Pure and Applied Mathematics, 2007, 8(2).
  • 7Guan Kai-zhong. Some properties of a class of symmetric functions[J]. J. Math. Anal. Appl., 2007, 336:70-80.
  • 8Shi Huan-nan, Jiang Yong-ming and Jiang Wei-dong. Schur-Convexity and Schur-Geometrically Concavity of Gini Mean[J]. Comput.Math. Appl.,2009, 57:266-274.
  • 9YangZhenhang.Schur power convexity of Gini means.不等式研究通讯,2010,:140-160.
  • 10Matkowski J. L^p-Like paranorms, selected topics in functional equations and iteration theory[J]. Proceedings of the Austrian-Polish Seminar, Graz Math Ber, 1992, 316.

共引文献27

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部