期刊文献+

基于模糊补偿的RBF神经网络机械手控制 被引量:10

RBF Neural Network Robot Manipulator Control Based on Fuzzy Compensation
下载PDF
导出
摘要 针对机械手系统的高精度轨迹跟踪控制,提出了一种基于模糊补偿的RBF(radial basis function)神经网络机械手控制方法.该方法首先利用PD(proportional-integral)控制器获得机械手的控制策略,将其输出作为RBF神经网络的输入,并学习得到系统模型;然后运用模糊逻辑补偿器对系统扰动和建模误差进行补偿;最后,在MATLAB/Simulink平台上针对两关节机械臂,进行了有模糊补偿和无模糊补偿系统跟踪的均方根误差测量仿真实验.研究结果表明,两关节机械臂的控制精度分别提高了60.8%和71.4%,本文提出的方法能够解决机械手实际模型很难精确建立的问题,并能对系统未建模部分和扰动部分进行自适应补偿. For achieving high precision trajectory tracking control of robot manipulators,a control strategy based on fuzzy logic compensation for radial basis function( RBF) neural networks has been proposed. First,the output of a proportional-integral( PD) controller was used in conjunction with an RBF neural network for obtaining a dynamic model of the robot manipulator system. A fuzzy compensator was then introduced for addressing the modelling errors and external disturbances.Furthermore,the fuzzy compensator control scheme and the non-fuzzy compensator control scheme were applied to two-degrees-of-freedom robot manipulators through simulation with MATLAB and Simulink,and the root mean square deviation of tracking errors was thereby measured. The obtained results show that the control accuracies of the first and second joints of the robot manipulators can be improved by60. 8% and 71. 4%,respectively. Furthermore,the proposed control scheme can be applied to such robot manipulators which cannot be precisely modelled by compensating the non-modelled part and external disturbances of the system.
作者 毛润 高宏力 宋兴国 MAO Run;GAO Hongli;SONG Xingguo(School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031,China)
出处 《西南交通大学学报》 EI CSCD 北大核心 2018年第3期638-645,共8页 Journal of Southwest Jiaotong University
关键词 机械手 PD控制 RBF神经网络 模糊逻辑 manipulators proportional-integral control radial basis function networks fuzzy logic
  • 相关文献

参考文献6

二级参考文献48

  • 1王永富,柴天佑.机器人关节摩擦的自适应模糊补偿建模与控制[J].仪器仪表学报,2006,27(2):186-190. 被引量:11
  • 2代颖,郑南宁.指数稳定的机器人鲁棒跟踪控制[J].机器人,1997,19(3):161-165. 被引量:2
  • 3Dixon W E, Zerqeroqlu E, Dawson D M. Global robust output feedback tracking control of robot manipulators[J]. Robotica, 2004, 22(4): 351-357.
  • 4Reyesa F, Kelly R. Experimental evaluation of model,based controllers on a direct drive robot arm[J]. Mechatronics, 2001, 11(3): 267-282.
  • 5Wai R J, Chen P C. Robust neural- fuzzy-network control for robot manipulator including actuator dynamics[J]. IEEE Transactions on Industry Electronics, 2006, 53(4): 1328-1349.
  • 6Ren Xuemei, Rad A B, Lewis F L. Neural network-based compensation control of robot manipulators with unknown dynamics[C]. The American Control Conference, New York, USA, 2007.
  • 7Lewis F L, Yesildirek A, Liu K. Multilayer neural-net robot controller with guaranteed tracking performance[J]. IEEE Transactions on Neural Networks, 1996, 7(2): 388-399.
  • 8Ge S S, Hang C C, Woon L C. Adaptive neural network control of robot manipulators in task space[J]. IEEE Transactions on Industrial Electronics, 1997, 44(6): 746-752.
  • 9Purwar S, Kar I N, Jha A N. Neuro sliding mode control of robotic manipulator[C]. IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 2004.
  • 10Sun Fuchun, Sun Zengqi, Zhang R J, et al. Neural adaptive tracking controller for robot manipulators with unknown dynamics[J], IEE Proceedings-Control Theory and Applications, 2000, 147(3): 366-370.

共引文献95

同被引文献90

引证文献10

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部