摘要
首先,从医疗语料库中识别症状描述词语,基于症状间语义关系构建症状本体。然后,通过文本挖掘抽取疾病与症状间的关系、疾病与疾病间的易误诊关系,建立疾病-症状语义网DSSN。DSSN中包含了疾病本体DO、新构建的症状本体、疾病间的易误诊关系及鉴别诊断知识。最后,通过一个临床诊断中的用例来说明DSSN在临床辅助诊断系统中对易误诊提示的帮助。
A Disease-Symptom Semantic Net(DSSN)for misdiagnosis prompt is constructed.First,symptom words are recognized from medical corpus,and a symptom ontology based on semantic relations between symptom words is established.Then,the relations between diseases and symptoms and the misdiagnosed relations between diseases were test mined and extracted to construct DSSN.DSSN contains Disease Ontology(DO),new established symptom ontology,misdiagnosed relations between diseases and differential diagnosis knowledge.Finally,a use case in clinical diagnosis is used to illustrate that DSSN is helpful to prompt misdiagnosis in clinical assistance diagnosis system.
作者
黄岚
纪林影
姚刚
翟睿峰
白天
HUANG Lan;JI Lin- ying;YAO Gang;ZHAI Rui-feng;BAI Tian(College of Computer Science and Technology, Jilin University, Changchun 130012, China;Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China;College of Sofware, Jilin University, Changchun 130012, China;Neurological Department, The Second Hospital of Jilin University, Changchun 130041, China;College of Electronical and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China)
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2018年第3期859-865,共7页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金项目(61472159
61702214
61572227)
吉林省重点科技攻关项目(20160204022GX
20170101006JC
20170203002GX
20150520064JH)
吉林省产业创新专项项目(2017C030-1
2017C033)
中国博士后科学基金面上项目(2014M561293)
珠海市优势学科项目
广东省优势重点学科建设项目
关键词
人工智能
语义网
文本挖掘
误诊
本体
artificial intelligence
semantic network
text mining
misdiagnosis
ontology