期刊文献+

叶片尾缘冷气喷射气动与传热性能分析 被引量:3

Analysis of Aerodynamic and Heat Transfer Performance of the Blade Trailing Edge Ejection
原文传递
导出
摘要 基于尺度自适应(Scale Adaptive Simulation,SAS)湍流模型,对叶片尾缘偏开缝射流尾迹结构、尾迹掺混损失和壁面冷却有效度在不同射流/主流速度比(VR)条件下的变化规律进行数值模拟研究。结果表明:VR为1.0时冷气对尾缘壁面的冷却效果总体较好;上、下板尾缘脱落涡的主导结构均为卡门涡,随着VR的增大,其脱落频率与旋涡强度增大,导致涡量和剪切应力升高,而尾迹掺混损失由湍流脉动能量和板后回流区长度共同决定;VR为0.5和1.0时尾迹掺混损失相差不大,VR为1.5时相比0.5时增大了4.53%。 The effect of trailing edge coolant ejection on the film-cooling effectiveness,mixing loss and wake flow characteristics of the subsonic turbine blade was numerically studied.The Scale Adaptive Simulation(SAS) turbulence model was selected to solve the unsteady RANS equation.The three different velocity ratios(VR) ranging from 0.5 to 1.5 were chosen to analyze the effect of coolant ejection on the aerodynamic and heat transfer performance.Results showed that the film-cooling effectiveness is generally higher than other cases when VR is 1.0.The mixing loss coefficient is basically same when VR is 0.5 and1.0,but increases significantly at VR of 1.5.The mixing loss in the wake depends on both the turbulent fluctuation energy and the recirculation zone length in flow direction.The main structures of shedding vortex behind upper and lower plates are Karman vortex.The frequency and amplitude of shedding vortex constantly increase with VR,leading to increased vorticity and shear stress.
作者 姚世传 施鎏鎏 刘正 戴韧 YAO Shi-chuan, SHI Liu-liu, LIU Zheng, DAI Ren(College of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China, Post Code :200093)
出处 《热能动力工程》 CAS CSCD 北大核心 2018年第5期47-54,共8页 Journal of Engineering for Thermal Energy and Power
基金 国家自然科学基金(51276116,11602143) 上海高校青年教师培养资助计划(slg16004)~~
关键词 偏开缝射流 速度比 卡门涡 掺混损失 气动性能 冷却有效度 cutback ejection velocity ratio Karman vortex mixing loss aerodynamic performance filmcooling effectiveness
  • 相关文献

参考文献6

二级参考文献42

  • 1祁明旭,丰镇平.透平动叶顶部间隙流的端壁二次流结构研究[J].西安交通大学学报,2005,39(5):445-449. 被引量:15
  • 2乔渭阳,曾军,曾文演,黄康才,孙大伟,张漫.气膜孔喷气对涡轮气动性能影响的实验研究[J].推进技术,2007,28(1):14-19. 被引量:13
  • 3Wahers D K, Leylek J H. Impact of film-cooling jets on turbine aerodynamic losses [ J ]. ASME Journal of Turbomachinery, 2000,122(7 ).
  • 4Jackson D J, Lee K L, Ligrani P M, et al. Transonic aerodynamic losses due to turbine airfoil, suction surface film cooling [ J ]. ASME Journal of Turbomachinery, 2000,122(4).
  • 5Deckers M, Denton J D. The aerodynamics of trailingedge-cooled transonic turbine blades: part 1-experimental approach [ R]. ASME 97-GT-518.
  • 6Sieverding C H. The influence of trailing edge ejection on the base pressure in transonic turbine cascades [ R ]. ASME 82-GT-50.
  • 7Metzger D E, Kim Y W, Yu Y. Turbine cooling: an overview and some focus topics [ C]. Proc. 1993 International Symposium on Transport Phenomena in Thermal Engineering, 1993.
  • 8Uzol O, Camci C, Glezer B. Aerodynamic loss characteristics of a turbine blade with trailing edge coolant ejection: part 1-effect of cut-back length, spanwise rib spacing, free-stream Reynolds number, and chordwise rib length on discharge coefficients [ R ]. ASME 2000-GT- 258.
  • 9Uzol O, Camci C, Glezer B. Aerodynamic loss characteristics of a turbine blade with trailing edge coolant ejection: part 2-external aerodynamics, total pressure losses, and predictions [ R]. ASME 2000-GT-557.
  • 10Menter F R. Two-equation eddy-viscosity turbulence models for engineering application [ J]. AIAA Journal, 1994, 32(8).

共引文献32

同被引文献15

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部