摘要
The variant selection of martensites(ε-M and α'-M) and ε-M reversion in dynamic tensile high-manganese TRIP steel were investigated. α'-M variant pairs with a zigzag morphology frequently formed, and the pairs of neighboring α'-M variants were examined in terms of mechanical work and strain energy reduction. The occurrence of a primary α'-M variant is determined by mechanical work, but high products of mechanical work and strain energy reduction are essential for secondary variant selection. In contrast to α'-M variant pair selection, ε-M variant selection can be attributed to the highest mechanical work. During ε-M→α'-M transformation, the mechanical work of ε-M reversion is higher than that of α'-M variant, thereby implying that ε-M reversion in h110 icgrain is possible. e-M plate distribution also affects the feasibility of ε-M reversion.
The variant selection of martensites(ε-M and α'-M) and ε-M reversion in dynamic tensile high-manganese TRIP steel were investigated. α'-M variant pairs with a zigzag morphology frequently formed, and the pairs of neighboring α'-M variants were examined in terms of mechanical work and strain energy reduction. The occurrence of a primary α'-M variant is determined by mechanical work, but high products of mechanical work and strain energy reduction are essential for secondary variant selection. In contrast to α'-M variant pair selection, ε-M variant selection can be attributed to the highest mechanical work. During ε-M→α'-M transformation, the mechanical work of ε-M reversion is higher than that of α'-M variant, thereby implying that ε-M reversion in h110 icgrain is possible. e-M plate distribution also affects the feasibility of ε-M reversion.
基金
financially supported by the National Natural Science Foundation of China (No. 51271028)