期刊文献+

Enhancing Wear Resistance of A356 Alloy by Adding CNFs Based on Ultrasonic Vibration Casting 被引量:3

Enhancing Wear Resistance of A356 Alloy by Adding CNFs Based on Ultrasonic Vibration Casting
原文传递
导出
摘要 A356–carbon nanofibers(CNFs) composites with different contents of CNFs were fabricated by ultrasonic vibration casting to investigate the effect of CNFs in the matrix on the mechanical properties and wear resistance. The worn surfaces were investigated using scanning electron microscopy(SEM). As the CNFs content was increased, strength,hardness and wear resistance were significantly enhanced and the coefficient of friction was extremely reduced. The nanocomposite containing 1.2 wt% of CNFs exhibited more than 109 HV in hardness and less than 0.35 in the coefficient of friction. Compared with the as-cast matrix, the wear rate of the optimal composite was less than one-third of the matrix sample and the microhardness exhibited about 47% enhancement of the matrix. Meanwhile, steadier and lower friction coefficient was also achieved by the composite. CNFs were observed to be either partially or fully crushed forming a carbon film that covered the surface and acted as a solid lubricant, enhancing the wear behavior significantly. A356–carbon nanofibers(CNFs) composites with different contents of CNFs were fabricated by ultrasonic vibration casting to investigate the effect of CNFs in the matrix on the mechanical properties and wear resistance. The worn surfaces were investigated using scanning electron microscopy(SEM). As the CNFs content was increased, strength,hardness and wear resistance were significantly enhanced and the coefficient of friction was extremely reduced. The nanocomposite containing 1.2 wt% of CNFs exhibited more than 109 HV in hardness and less than 0.35 in the coefficient of friction. Compared with the as-cast matrix, the wear rate of the optimal composite was less than one-third of the matrix sample and the microhardness exhibited about 47% enhancement of the matrix. Meanwhile, steadier and lower friction coefficient was also achieved by the composite. CNFs were observed to be either partially or fully crushed forming a carbon film that covered the surface and acted as a solid lubricant, enhancing the wear behavior significantly.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第5期523-532,共10页 金属学报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 51364035) the Natural Science Foundation of Jiangxi Province (No. 20171BAB206034)
关键词 A356 matrix composites Carbon nanofibers Wear testing A356 matrix composites Carbon nanofibers Wear testing
  • 相关文献

同被引文献18

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部