摘要
Multi-bridge machining systems(MBMS) have gained wide applications in industry due to their high production capacity and efficiency. They contain multiple bridge machines working in parallel within their partially overlapping workspaces.Their scheduling problems can be abstracted into a serial-colored travelling salesman problem in which each salesman has some exclusive cities and some cities shared with its neighbor(s). To solve it, we develop a greedy algorithm that selects a neighboring city satisfying proximity. The algorithm allows a salesman to select randomly its shared cities and runs accordingly many times. It can thus be used to solve job scheduling problems for MBMS. Subsequently, a collision-free scheduling method is proposed to address both job scheduling and collision resolution issues of MBMS. It is an extension of the greedy algorithm by introducing time window constraints and a collision resolution mechanism. Thus, the augmented greedy algorithm can try its best to select stepwise a job for an individual machine such that no time overlaps exist between it and the job sequence of the neighboring machine dealt in the corresponding overlapping workspace; and remove such a time overlap only when it is inevitable. Finally, we conduct a case study of a large triplebridge waterjet cutting system by applying the proposed method.
Multi-bridge machining systems(MBMS) have gained wide applications in industry due to their high production capacity and efficiency. They contain multiple bridge machines working in parallel within their partially overlapping workspaces.Their scheduling problems can be abstracted into a serial-colored travelling salesman problem in which each salesman has some exclusive cities and some cities shared with its neighbor(s). To solve it, we develop a greedy algorithm that selects a neighboring city satisfying proximity. The algorithm allows a salesman to select randomly its shared cities and runs accordingly many times. It can thus be used to solve job scheduling problems for MBMS. Subsequently, a collision-free scheduling method is proposed to address both job scheduling and collision resolution issues of MBMS. It is an extension of the greedy algorithm by introducing time window constraints and a collision resolution mechanism. Thus, the augmented greedy algorithm can try its best to select stepwise a job for an individual machine such that no time overlaps exist between it and the job sequence of the neighboring machine dealt in the corresponding overlapping workspace; and remove such a time overlap only when it is inevitable. Finally, we conduct a case study of a large triplebridge waterjet cutting system by applying the proposed method.
基金
supported in part by the National Natural Science Foundation of China(61773115,61374069,61374148)
the Natural Science Foundation of Jiangsu Province(BK20161427)