期刊文献+

基于SVM算法的工业防火墙规则自学习方法 被引量:2

Self-learning method of industrial firewall rules based on SVM algorithm
下载PDF
导出
摘要 针对工控网络的攻击不断增多,工业防火墙在网络防火墙基础上增加工业协议过滤模块,在应用层深度解析工业协议内部,添加基于白名单策略的过滤规则表,只允许合法数据通过,从而提高工控网络安全。提出一种自生成过滤规则的方法,利用SVM算法对提取的工控网络数据特征学习生成识别模型,通过优化训练样本与模型参数提高模型识别性能,然后识别出正常数据自动添加进过滤规则表。实验结果表明,该方法生成过滤规则准确率高,提高了工业防火墙整体性能。 For increasing attacks on industrial control networks,the industrial firewall add an industrial protocol filtering module based on the network firewall to improve the security of industrial control networks. The industrial protocol filtering module internally analyzes the industrial protocol in the application layer and adds a filtering rule list based on the white list policy to only allow valid data to pass. A method of selflearning firewall rules was proposed,using Support Vector Machine( SVM) algorithm to learn the data features extracted from industrial control network and then generate recognition model. It will improve the overall performance of the mode by optimizing training samples and model parameters. It identifies the normal data automatically and then generates the filtering rules. The experimental results show that the proposed method has high accuracy of generating firewall rules and improves the overall performance of industrial firewall.
作者 潘峰 王世伟 薛萍 Pan Feng;Wang Shiwei;Xue Ping(Moutai Institute,Zunyi 564507,China;Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《信息技术与网络安全》 2018年第5期29-33,共5页 Information Technology and Network Security
基金 横向科研项目 蓝盾PLC防火墙项目(201604)
关键词 工控网络安全 工业防火墙 自学习方法 支持向量机 不均衡数据 industrial control network security industrial firewall self-learning method Support Vector Machine imbalanced data sets
  • 相关文献

参考文献6

二级参考文献63

  • 1吴旗,刘健男,寇文龙,张宗升.改进的单类支持向量机的网络流量检测[J].吉林大学学报(工学版),2013,43(S1):124-127. 被引量:3
  • 2王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报(自然科学版),2005,35(5):859-862. 被引量:127
  • 3韩慧,王文渊,毛炳寰.不均衡数据集中基于Adaboost的过抽样算法[J].计算机工程,2007,33(10):207-209. 被引量:13
  • 4Huang J, Charles X Ling. Using AUC and accuracy in evaluating learning algorithms[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(3): 299-310.
  • 5Cohen G, Hilario M, Hugonet Sax H S, et al. Learning from imbalanced data in surveillance of nosocomial infection[J]. Artificial Intelligence in Medicine, 2006, 37(5): 7-18.
  • 6Burez J, Van den Poel D. Handling class imbalance in customer churn prediction[J]. Expert Systems with Applications, 2009, 36(3): 4626-4636.
  • 7Zhou Z H, Liu X Y. The influence of class imbalance on cost-sensitive learning: An empirical study[C]. Proc of the 6th IEEE Int Conf on Data Mining. Hong Kong: IEEE Press, 2006: 970-974.
  • 8Liu X Y, Wu J X, Zhou Z H. Exploratory under-sampling for class-imbalance learning[C]. Proc of the 6th IEEE Int Conf on Data Mining. Hong Kong: IEEE Press, 2006: 965-969.
  • 9Zhou Z H, Liu X Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem[J]. IEEE Trans on Knowledge and Data Engineering, 2006, 18(1): 63-77.
  • 10Liu X Y, Wu J, Zhou Z H. Exploratory under-sampling for class-imbalance learning[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(2): 539- 550.

共引文献149

同被引文献25

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部