期刊文献+

一种基于差分隐私的位置隐私保护算法

A Location Privacy Protection Algorithm Based on Differential Privacy
下载PDF
导出
摘要 近年来,移动终端科技和GPS定位技术飞速发展,人们随时随地获取自身的位置信息数据成为现实。这给人们带来极大方便的同时也不可避免地带来了一系列问题,其中最突出的就是位置数据隐私保护问题。笔者提出一种结合差分隐私技术的位置隐私保护算法,力求在保证隐私保护程度的前提下,寻找到其与服务质量之间的平衡。 In recent years, mobile terminal technology and GPS positioning technology have developed rapidly. People can obtain their own location information data anytime and anywhere. This brings great convenience to people and inevitably brings with it a series of troublesome issues. The most acute and prominent one is the problem of location data privacy protection. The author proposes a location privacy protection algorithm combined with differential privacy technology, and strives to find a balance between it and the quality of service on the premise of ensuring privacy protection.
作者 王京 Wang Jing(Xi'an Peihua University, Xi'an Shaanxi 710125, China)
机构地区 西安培华学院
出处 《信息与电脑》 2018年第9期66-67,共2页 Information & Computer
关键词 位置隐私 差分隐私 隐私保护程度 location privacy differential privacy privacy protection
  • 相关文献

参考文献3

二级参考文献41

  • 1ADAM N R, WORTHMANN J C. Security-control methods for statis- tical databases: a comparative study [J]. ACM Computing Surveys (CSUR), 1989, 21(4): 515-556.
  • 2LATANYA S. k-anonymity: a model for protecting privacy [J]. Inter- national Journal on Uncertainty Fuzziness Knowledge-based Systems, 2002, 10(5): 557-570.
  • 3DWORK C. Differential privacy[M]. Encyclopedia of Cryptography and Security. Springer US, 2011 : 338-340.
  • 4VERYKIOS V S, BERTINO E, FOVINO I N, et al. State-of-the-art in privacy preserving data mining[J]. ACM Sigmod Record, 2004, 33(1): 50-57.
  • 5DWORK C, NISSIM K. Privacy-preserving datamining on vertically partitioned databases[C]//Advances in Cryptology-CRYPTO 2004. California, USA: Springer Berlin Heidelberg, e2004: 528-544.
  • 6FRIEDMAN A, SCHUSTER A. Data mining with differential privacy [C]//The 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA: ACM, e2010: 493-502.
  • 7CHAUDHURI K, MONTELEONI C, SARWATE A D. Differentially private empirical risk minimization[J]. The Journal of Machine Learn- ing Research, 2011, 12: 1069-1109.
  • 8OLIVEIRA S R M, ZAIANE 0 R. Privacy preserving clustering by data transformation [J]. Journal of Information and Data Management, 2010, 1(1): 37.
  • 9KUMAR K A, RANGAN C E Privacy preserving DBSCAN algorithm for clustering[C]//Advanced Data Mining and Applications. Harbin, China, c2007: 57-68.
  • 10AMIRBEKYAN A, ESTIVILL-CASTRO V. Privacy preserving DBSCAN for vertically partitioned data[C]/flntelligence and Security Informaties. San Diego, CA, USA: Springer Berlin Heidelberg, 02006: 141-153.

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部