期刊文献+

基于BP神经网络的光伏发电功率预测研究 被引量:12

Research on Prediction of Photo-Voltaic Power Based on BP Neural Network
下载PDF
导出
摘要 随着光伏并网容量的增加,光伏发电功率的波动对电网调度运行的影响不容忽视,电网对光伏发电功率预测精度提出了更高要求。在分析了光伏发电功率波动影响因素的基础上,基于BP神经网络建立光伏发电功率预测模型。通过大唐吐鲁番光伏发电实测数据验证该方法,预测结果 RMSE为3.544,表明该方法可以准确预测光伏发电功率。 With the increase of the capacity of photovoltaic connected to grid,influence of photovoltaic power fluctuation on power grid operation can not be ignored. The grid puts forward higher requirements on the accuracy of photovoltaic power prediction. Based on the analysis of the factors affecting the PV power fluctuation,the prediction model of photovoltaic power based on BP neural network is established. Institute of technology in Datang Turpan photovoltaic power generation data validate this method. The prediction results of RMSE is 3. 544,showing that this method can accurately predict the PV power.
作者 陈德会 杨海艳 曲宏伟 CHEN Dehui;YANG Haiyan;QU Hongwei(Datang Xinjiang Clean Energy Co., Ltd., Urumchi, Xinjiang 830001, China;Shool of Energy and Power Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China)
出处 《东北电力技术》 2018年第4期42-44,共3页 Northeast Electric Power Technology
关键词 光伏发电功率 预测 神经网络 均方根误差 photovoltaic power generation prediction neural network root mean square error
  • 相关文献

参考文献4

二级参考文献41

  • 1李碧君,方勇杰,杨卫东,徐泰山.光伏发电并网大电网面临的问题与对策[J].电网与清洁能源,2010,26(4):52-59. 被引量:76
  • 2Femia N, Petrone G, Spagnuolo G, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Transactions on Power Electronics, 2005, 20(4): 963-973.
  • 3Kim I S, Kim M B, Youn M J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1027-1035.
  • 4Xiao W, Lind M G J, Dunford W G, et al. Real-time identification of optimal operating points in photovoltaic power systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1017-1026.
  • 5Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 97-109.
  • 6Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system[C]. IEEE Power Engineering Society General Meeting, 2007.
  • 7Tsikalakis A G, Hatziargyriou Nikos D. Centralized control for optimizing microgrids operation[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 24 1-248.
  • 8Kem E C, Culachenski E M, Ken G A. Cloud effects on distributed photovoltaic generation: slow transients at the gardner, massachusetts photovoltaic experiment[J]. IEEE Transactions on Energy Conversion, 1989,4(2): 184-190.
  • 9Jewell W T, Unruh T D. Limits on cloud-induced fluctuation in photovoltaic generation[J]. IEEE Transactions on Energy Conversion, 1999, 5(1):8-14.
  • 10Mellit A, Arab A H, Khorissi N, et al. An ANFIS-based forecasting for Solar radiation data from sunshine duration and ambient temperature[C]. IEEE Power Engineering Society General Meeting, 2007.

共引文献378

同被引文献128

引证文献12

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部