期刊文献+

一种平稳子空间分析的快速不动点算法

A Fast Fixed-point Algorithm for Stationary Subspace Analysis
下载PDF
导出
摘要 平稳子空间分析是新近发展的一种信号处理和数据分析技术,能够从观测到的多维非平稳信号中分离出平稳源信号。标准的平稳子空间分析算法基于Stiefel流形上的梯度下降方法。针对该算法收敛慢、耗时多的缺陷,根据关于Stiefel流形上优化问题的一阶最优性条件构造了迭代公式,提出一种新的平稳子空间分析的不动点算法。仿真实验表明,本文算法能够有效地分离出平稳源信号,分离性能优于已有的平稳子空间分析的不动点算法;与标准的基于Stiefel流形上梯度下降的算法相比,本文算法收敛更快,耗时更少。 Stationary subspace analysis is a recently developed technique for signal processing and data analysis,which is capable of separating stationary source signals from observed multidimensional nonstationary signals. The standard algorithm for stationary subspace analysis stems from the gradient descend over the Stiefel manifold,which converges slow and is time-consuming. In order to overcome those drawbacks,an iterative formula is constructed on the basis of the first-order optimality condition related to optimization problems over Stiefel manifolds,and thereby a novel fixed-point algorithm is proposed for stationary subspace analysis. Computer simulations show that the proposed algorithm is able to separate the stationary sources effectively with a better separation performance than that of the existing fixed-point algorithm,and in contrast to the standard algorithm that is based on the gradient descend over the Stiefel manifold,the proposed algorithm converges faster and is less time-consuming.
作者 林原灵 陈前 LIN Yuan-ling;CHEN Qian(State Key Laboratory of Mechanics and Control of Mechanical Structures,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《计算机与现代化》 2018年第5期1-5,共5页 Computer and Modernization
基金 国家自然科学基金资助项目(11472127) 江苏高校优势学科建设工程资助项目
关键词 平稳子空间分析 不动点迭代 施蒂费尔流形最优化 平稳 非平稳 stationary- subspaee analysis fixed-point iteration Stiefel manifold optimization stationarity nonstationarity
  • 相关文献

参考文献6

二级参考文献66

  • 1刘清坤,阙沛文,郭华伟,宋寿鹏.基于相空间重构和独立分量分析的超声信号噪声消除[J].上海交通大学学报,2006,40(10):1739-1742. 被引量:9
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 3Hyvarinen A. Fast and robust fixed point algorithms for independent component analysis [ J ]. IEEE Trans. Neural Networks, 1999,10 (3) : 626-634.
  • 4Cao X R,Liu R W. A general approach to blind source separation [J]. IEEE Trans. Signal Processing, 1996,44(3) : 562-571.
  • 5Amari S, Cichocki A, Yang H H. A new learning algorithm for blind singal separation[ C]//Advances in Neural Informarion Processing. MIT Press, Cambridge, MA, 1996, 8: 757 -763.
  • 6Comon P. Independent component analysis, a new concept [J]. Signal Processing,1994,36(3) :287-314.
  • 7Hyvarinen A. Independent component analysis: Algorithms and applications [ J ]. Neural Networks ,2000,13 (4) :411-430.
  • 8Jutten C, Herauh J. Blind separation of sources Part Ⅰ: An adaptive algorithm based on neuromimetic architecture [ J ]. Signal Processing, 1991,24( 1 ) : 1-10.
  • 9Leen T W, Girolami M, Sejnowski T J. Independent component analysis using an extended infomax algorithm for mixed sub Gaussian and super Ganssian sources[J]. Neural Computations, 1999,11 (2) :417-441.
  • 10Hyvarinen A. The FastICA MATLAB Package[ EB/OL]. http:// www. cis. hut. fi/projects/ica/fastica/1998,1998-02-01.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部