摘要
研究非自治广义Birkhoff系统的半负定矩阵梯度系统表示。给出了非自治广义Birkhoff系统成为半负定矩阵梯度系统的条件,利用半负定矩阵梯度系统的性质来研究解的稳定性。举例说明结果的应用。
A semi-negative definite matrix gradient system representation for a type non-autonomous Birkhoff system is studied. The condition under which a non-autonomous generalized Birkhoff system can be considered as semi-negative definite matrix gradient system is obtained. The of semi-negative definite matrix gradient system is then used to study the stability of non-Birkhoff system. Examples have been given to illustrate the applications of the results.
作者
王嘉航
张毅
WANG Jiahang;ZHANG Yi(College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China;College of Civil and Transportation Engineering,Hohai University,Nanjinng 210098,china)
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第3期60-63,共4页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金(10972151
11272227)
苏州科技大学科研基金(XKZ2017005)
关键词
非自治广义Brkhoff系统
半负定矩阵梯度系统
稳定性
non -autonomous generalized Birkhoff system
semi-negative definite matrix gradient system
stability