摘要
提出了一类具有饱和发生率的被修正HIV传染病模型。首先通过分析相应的特征方程,得到了无病平衡点E0(T0,0,0)和正平衡点E*(T*,I*,V*)的局部渐近稳定性。进一步构造Lyapunov函数和利用LaSalle不变集原理,证明了当基本再生数R0<1时,无病平衡点E0(T0,0,0)是全局渐近稳定的;利用第二加性复合矩阵,证明了当基本再生数R0>1时,正平衡点E*(T*,I*,V*)是全局渐近稳定的。最后通过数值模拟,验证了所得主要理论结果。
A modified HIV infection model with saturation incidence is studied. By analyzing characteristic equations , the local stability of an infection-free equilibrium , 0 , 0) and apositive equilibrium^ (T* , I* , V* ) is discussed. By using suitable Lyapunov functions and the LaSalle invariant principle , it is proved that if the basic reproductive number R0 〈1 , the infection-(T ,00) is globally asymptotically stable. I the basic reproductive number〉 1 , by means of the second additive compound matrix , the globally asymptotical stability of the positive equilibrium E* (T , I , V ) is obtained. Numerical simulations are carried out to simulations are carried out retical re-sults.
作者
杨俊仙
王雷宏
YANG Junxian;WANG Leihong(School of Science,Anhui Agricultural University,Hefei 230036,China;School of Forestry & Landscape Architecture,Anhui Agricultural University,Hefei230036,China)
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第3期64-69,共6页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金(11201002)
安徽省高校自然科学重点项目(KJ2017A815)