期刊文献+

具饱和发生率的被修正HIV传染病模型的全局稳定性 被引量:3

Global stability of a modified HIV infection model with saturation incidence
下载PDF
导出
摘要 提出了一类具有饱和发生率的被修正HIV传染病模型。首先通过分析相应的特征方程,得到了无病平衡点E0(T0,0,0)和正平衡点E*(T*,I*,V*)的局部渐近稳定性。进一步构造Lyapunov函数和利用LaSalle不变集原理,证明了当基本再生数R0<1时,无病平衡点E0(T0,0,0)是全局渐近稳定的;利用第二加性复合矩阵,证明了当基本再生数R0>1时,正平衡点E*(T*,I*,V*)是全局渐近稳定的。最后通过数值模拟,验证了所得主要理论结果。 A modified HIV infection model with saturation incidence is studied. By analyzing characteristic equations , the local stability of an infection-free equilibrium , 0 , 0) and apositive equilibrium^ (T* , I* , V* ) is discussed. By using suitable Lyapunov functions and the LaSalle invariant principle , it is proved that if the basic reproductive number R0 〈1 , the infection-(T ,00) is globally asymptotically stable. I the basic reproductive number〉 1 , by means of the second additive compound matrix , the globally asymptotical stability of the positive equilibrium E* (T , I , V ) is obtained. Numerical simulations are carried out to simulations are carried out retical re-sults.
作者 杨俊仙 王雷宏 YANG Junxian;WANG Leihong(School of Science,Anhui Agricultural University,Hefei 230036,China;School of Forestry & Landscape Architecture,Anhui Agricultural University,Hefei230036,China)
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期64-69,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金(11201002) 安徽省高校自然科学重点项目(KJ2017A815)
关键词 HIV传染病 饱和发生率 LYAPUNOV函数 LaSalle不变集原理 第二加性复合矩阵 HIV infection saturation incidence Lyapunov function LaSalle second additive compound matrix
  • 相关文献

参考文献2

二级参考文献22

  • 1MO JiaQi1,2 1 Anhui Normal University, Wuhu 241000, China,2 Division of Computational Science, E-Institutes of Shanghai Universities, at SJTU, Shanghai 200240, China.Homotopic mapping solving method for gain fluency of a laser pulse amplifier[J].Science China(Physics,Mechanics & Astronomy),2009,52(7):1007-1010. 被引量:124
  • 2PERELSON A, NELSON P. Mathematical models of HIV dynamics in vivo [J]. SIAM Review, 1999,41(1) 3 - 44.
  • 3REGOES R R, EBERT D, BONHOEFFER S. Dose-de- pendent infection rates of parasites produce the Allee effect in epidemiology [ J ]. Proceedings of the Royal of Society, 2002, 269(1488): 271 -279.
  • 4SONG X Y, NEUMANN A U. Global stability and peri- odic solution of the viral dynamics [ J ]. Journal of Mathe- matical Analysis and Applications, 2007, 329( 1 ) :281 - 297.
  • 5HERZ ANDERSON V M, BONHOEFFER S, ANDER- SON R M, et al. Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus delay [ J ]. Proceedings of the National Academy of Sciences, 1996, 93(14) : 7247 -7251.
  • 6BAIRAGI N, ADAK D. Global analysis of HIV-1 dynam- ics with Hill type infection rate and intracellular delay [ J]. Applied Mathematical Modelling, 2014, 38 (21/ 22) : 5047 - 5066.
  • 7. URSZULA F, JAN P. A delay-differential equation model of HIV related cancer-immune system dynamics [ J ]. Mathematical Biosciences and Engineering, 2011, 8 ( 2 ) : 627 - 641.
  • 8LI B, CHEN Y M, LU X J, et al. A delayed HIV-1 model with virus waning term [ J ]. Mathematical Biosci- ences and Engineering, 2016, 13(1) : 135 - 157.
  • 9LI D, MAW. Asymptotic properties of a HIV - 1 infec- tion model with time delay [ J ]. Journal of Mathematical Analysis and Applications, 2007, 335 ( 1 ) :683 - 691.
  • 10XU R. Global stability of an HIV - 1 infection model with saturation infection and intraeellular delay [ J ]. Journal of Mathematical Analysis and Applications, 2011, 375(1) : 75 -81.

共引文献3

同被引文献11

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部