期刊文献+

基于心率变异性与机器学习的睡眠呼吸事件分类 被引量:3

Classification of sleep respiratory events based on heart rate variability and machine learning
下载PDF
导出
摘要 为了提供一种针对睡眠呼吸暂停低通气综合征(sleep apnea hypopnea syndrome,SAHS)患者的筛查方法,本研究把心率变异性(heart rate variability,HRV)应用于睡眠呼吸模态的分类问题。通过构建和训练概率神经网络(probabilistic neural network,PNN)对HRV各特征值进行有无异常睡眠呼吸事件的判别,以期实现对该病征进行初步筛查的目的。首先,对标注的有无呼吸事件的多导睡眠监测数据提取其心电的HRV特征值,再经过归一化后作为特征向量;其次采用PNN分类算法对特征向量进行训练及分类输出;最后,对模型的预测分类性能进行评价。对于准确率、灵敏度、特异性、受试者工作特性曲线下面积(area under the receiver operating characteristic curve,AUC)及分类耗时等评价指标PNN分类器的结果分别为:75.97%,82.51%,76.22%,0.7936,0.63 s。与广义回归神经网络(generalized regression neural network,GRNN)及极限学习机(extreme learning machine,ELM)分类算法相比,PNN分类算法在灵敏度、特异性、AUC及分类耗时评价维度上均取得最优。本研究基于HRV及PNN分类算法实现了对有无异常睡眠呼吸事件的判别,提供了一种低生理负荷SAHS筛查的途径。 To provide a method for screening patients with sleep apnea hypopnea syndrome ( SAHS ),the heart rate variability ( HRV) was applied to the classification of sleep respirator neural net"work ( PNN) was proposed to classify the normal and abnormal sleep respiratory eventsaccording to the HRV features to achieve the purpose of preliminary screening of the disease. In this classification process,the HRV features of ECG were firstly extracted from the polysomnographic monitorngdata related to the normal and abnormal sleep respiratory events,and then normalized Then,PNN classification algorithm was used to train and classify the features. The prediction and classification performance of the model was finally evaluated. The results of the PNN classifier cy,sensitivity,speci f ici ty,area under the receiver operating characteristic curve ( AUC ) o f the subjects and time consumption for classif icat ion were re spective ly: 75. 9 7 % , 82. 5 1 % , 76. 22 % , 0. 7936 and0. 63 s. Compared wi th generalized regression neural network ( GRN N ) and extreme learning machine (ELM ) classification algorithms , PNN classification algorithm is opt imal in sensit ivity , spe c if ic ity , AUC and time consumptions. In this study , HRV and PNN classif icat ion algorithm were used to classify the presence or absence of abnormal sleep respiratory events , thus provid in g a low physiological load SAHS screening method. The study has a certain pra c tical significance for the initial screening of the disease.
作者 梁九兴 张湘民 黄少雄 曾令紫 罗语溪 LIANG Jiuxing;ZHANG Xiangmin;HUANG Shaoxiong;ZENG Lingzi;LUO Yuxi(School of Engineerng,Sun Yat-sen University,Guangzhou 510006,China;The Sixth Affiliated Hospital of Sun Yat-sen U n iversity,Guangzhou 510655,(china)
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期128-134,共7页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金(81570904) 广东省自然科学基金(2014A030313215) 广东省科技计划项目(2017B020210007)
关键词 心率变异性 睡眠呼吸事件 机器学习 分类算法 heart rate variability sleep respiratory event machine learning classification algorithm
  • 相关文献

参考文献3

二级参考文献27

  • 1刘力生.中国高血压防治指南2010[J].中国医学前沿杂志(电子版),2011,3(5):42-93. 被引量:1220
  • 2何权瀛.阻塞性睡眠呼吸暂停低通气综合征对心脑血管的损害[J].中华全科医师杂志,2005,4(4):207-208. 被引量:26
  • 3刘建红,韦彩周,黄陆颖,王武,雷志坚,梁大华,王丰,王晓源,刘凯,侯秀娟,汤小军.广西地区打鼾及阻塞性睡眠呼吸暂停低通气综合征的流行病学调查[J].中华流行病学杂志,2007,28(2):115-118. 被引量:76
  • 4何权瀛.目前我国睡眠呼吸医学面临的一些困难和问题[J].中国呼吸与危重监护杂志,2007,6(2):81-81. 被引量:13
  • 5Young T, Palta M, Dempsey J, et al. The occurrence of sleepdisordered breathing among middle-aged adults. N Engl J Med,1993, 328 : 1230-1235.
  • 6Bixler EO, Vgontzas AN, Ten Have T, et al. Effects of age on sleep apnea in men: I. Prevalence and severity. Am J Respir Crit Care Med, 1998, 157: 144-148.
  • 7Bixler EO, Vgontzas AN, Lin HM, et al. Prevalence of sleepdisordered breathing in women: effects of gender. Am J Respir Crit Care Med, 2001, 163(3 Pt 1 ) : 608-613.
  • 8Duran J, Esnoala S, Rubio R, et al. Obstructive sleep apneahypopnea and related clinical features in population-based sample of subjeets aged 30 to 70yr. Am J Respir Crit Care Med, 2001, 163(3Pt 1 ) : 685-689.
  • 9Bearpark H, ERiott L, Grunstein R, et al. Snoring and sleep apnea:a population study in Australian men. Am J Respir Crit Care Med,1995, 151 : 1459-1465.
  • 10Olson LG, King MT, Hensley MJ, et al. A community study of snoring and sleep-disordered breathing. Prevalence. Am J Respir Crit Care Med. 1995. 152: 711-716.

共引文献356

同被引文献33

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部