摘要
利用时间重新参数化方法,研究分数阶Lagrange系统的Noether准对称性与守恒量。首先,导出Caputo导数下的分数阶Lagrange方程。其次,给出分数阶Lagrange系统的分数阶守恒量的定义,在时间不变的特殊无限小变换群下给出分数阶Lagrange系统的Noether准对称性的定义和判据,并建立Noether准对称性定理。然后,利用时间重新参数化方法,给出在时间变化的一般无限小变换群下分数阶Lagrange系统的Noether准对称性的定义和判据,建立Noether准对称性定理。最后,举例说明结果的应用。
The Noether quasi-symmetry and the conserved quantity for a fractional Lagrange studied by using the time-reparameterization method. Firstly, the fractional Lagrange equations in terms of Caputo derivatives are derived; Secondly, the definition of fractional conserved quantity for the fractional Lagrange system is given, and based on the special infinitesimal transformations of group without transforming time, the definition and the criterion of the Noether quasi-symmetry for the fractional Lagrange system are given, and Noether's quasi-symmetry theorem is established; Finally, the definition and the criterion of Noether quasi-symmetry for the fractional Lagrange system under the general infinitesimal transformations of group with transforming time are given , Noethds quasi-symmetry theorem is derived by using the time-reparameterization method. An example is given to illustrate the application of the results.
作者
刘艳东
张毅
LIU Yandong;ZHANG Yi(College of Mathematics and P hysics,Suzhou Un ivers ity o f Science and Technology,Suzhou 215009,C h in a;College of Civil EnagSuzhou University of SciSuzhou 215011,China)
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第3期149-154,共6页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金(11572212
11272227)
苏州科技大学研究生科研创新计划(SKYCX16_004)